Find the general solution of the equation $\cos 4 x=\cos 2 x$
$\cos 4 x=\cos 2 x$
$\Rightarrow \cos 4 x-\cos 2 x=0$
$\Rightarrow-2 \sin \left(\frac{4 x+2 x}{2}\right) \sin \left(\frac{4 x-2 x}{2}\right)=0$
$\left[\because \cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)\right]$
$\Rightarrow \sin 3 x \sin x=0$
$\Rightarrow \sin 3 x=0$ or $\sin x=0$
$\therefore 3 x=n \pi$
or $\quad \sin x=0$
$\therefore 3 x=n \pi$
or $x=n \pi,$ where $n \in Z$
$\Rightarrow x=\frac{n \pi}{3}$
or $x=n \pi,$ where $n \in Z$
$\cot \theta = \sin 2\theta (\theta \ne n\pi $, $n$ is integer), if $\theta = $
If $\tan \theta + \tan 2\theta + \sqrt 3 \tan \theta \tan 2\theta = \sqrt 3 ,$ then
The set of angles btween $0$ & $2\pi $ satisfying the equation $4\, cos^2 \, \theta - 2 \sqrt 2 \, cos \,\theta - 1 = 0$ is
The total number of solution of $sin^4x + cos^4x = sinx\, cosx$ in $[0, 2\pi ]$ is equal to
Let $S=\{x \in R: \cos (x)+\cos (\sqrt{2} x)<2\}$, then