Find the general solution of the equation $\cos 4 x=\cos 2 x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\cos 4 x=\cos 2 x$

$\Rightarrow \cos 4 x-\cos 2 x=0$

$\Rightarrow-2 \sin \left(\frac{4 x+2 x}{2}\right) \sin \left(\frac{4 x-2 x}{2}\right)=0$

$\left[\because \cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)\right]$

$\Rightarrow \sin 3 x \sin x=0$

$\Rightarrow \sin 3 x=0$ or $\sin x=0$

$\therefore 3 x=n \pi$

or $\quad \sin x=0$

$\therefore 3 x=n \pi$

or $x=n \pi,$ where $n \in Z$

$\Rightarrow x=\frac{n \pi}{3}$

or $x=n \pi,$ where $n \in Z$

Similar Questions

If $sin\, \theta = sin\, \alpha$ then $sin\, \frac{\theta }{3}$ =

The number of solutions of $sin \,3x\, = cos\, 2x$ , in the interval $\left( {\frac{\pi }{2},\pi } \right)$ is

  • [JEE MAIN 2018]

If $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta $, then the general value of $\theta $ is

The solution of $tan\,\, 2\theta\,\, tan\theta = 1$ is

If $4{\sin ^4}x + {\cos ^4}x = 1,$ then $x =$