The general value of $\theta $ satisfying the equation $\tan \theta + \tan \left( {\frac{\pi }{2} - \theta } \right) = 2$, is

  • A

    $n\pi - \frac{\pi }{4}$

  • B

    $n\pi + \frac{\pi }{4}$

  • C

    $2n\pi \pm \frac{\pi }{4}$

  • D

    $n\pi + {( - 1)^n}\frac{\pi }{4}$

Similar Questions

If $\alpha ,\,\beta ,\,\gamma ,\,\delta $ are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity $k$ , then the value of $4\sin \frac{\alpha }{2} + 3\sin \frac{\beta }{2} + 2\sin \frac{\gamma }{2} + \sin \frac{\delta }{2}$ is equal to 

If $\sqrt 3 \cos \,\theta + \sin \theta = \sqrt 2 ,$ then the most general value of $\theta $ is

Number of solutions of $\sqrt {\tan \theta }  = 2\sin \theta ,\theta  \in \left[ {0,2\pi } \right]$ is equal to 

The number of all possible values of $\theta$, where $0<\theta<\pi$, for which the system of equations

$ (y+z) \cos 3 \theta=(x y z) \sin 3 \theta $

$ x \sin 3 \theta=\frac{2 \cos 3 \theta}{y}+\frac{2 \sin 3 \theta}{z} $

$ (x y z) \sin 3 \theta=(y+2 z) \cos 3 \theta+y \sin 3 \theta$ have a solution $\left(\mathrm{x}_0, \mathrm{y}_0, \mathrm{z}_0\right)$ with $\mathrm{y}_0 \mathrm{z}_0 \neq 0$, is

  • [IIT 2010]

The general solution of $\tan 3x = 1$ is