સમીકરણ $\tan \theta + \tan \left( {\frac{\pi }{2} - \theta } \right) = 2$, નું સમાધાન કરે તેવો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
$n\pi - \frac{\pi }{4}$
$n\pi + \frac{\pi }{4}$
$2n\pi \pm \frac{\pi }{4}$
$n\pi + {( - 1)^n}\frac{\pi }{4}$
જો સમીકરણ ${x^2} + \left( {\sin \,\theta + \cos \,\theta } \right)x + \frac{3}{8} = 0$ ના બંને ઉકેલો ભિન્ન અને ધન હોય તો $\theta $ ની $\left[ {0,2\pi } \right]$ માં ઉકેલોનો ગણ મેળવો.,
જો $\alpha ,\,\beta ,\,\gamma ,\,\delta $ એ ચડતા ક્રમમા છે જેના sine કિમત ધન સંખ્યા $k$ જેટલી હોય તો $4\sin \frac{\alpha }{2} + 3\sin \frac{\beta }{2} + 2\sin \frac{\gamma }{2} + \sin \frac{\delta }{2}$ ની કિમત મેળવો.
જો $\cot (\alpha + \beta ) = 0,$ તો $\sin (\alpha + 2\beta ) = $
$(x, y)$ની બધી જોડ મેળવો કે જેથી ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ થાય
જો $4{\sin ^2}\theta + 2(\sqrt 3 + 1)\cos \theta = 4 + \sqrt 3 $ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.