If $(2\cos x - 1)(3 + 2\cos x) = 0,\,0 \le x \le 2\pi $, then $x = $
$\frac{\pi }{3}$
$\frac{\pi }{3},\frac{{5\pi }}{3}$
$\frac{\pi }{2},\frac{{5\pi }}{3},{\cos ^{ - 1}}\left( { - \frac{3}{2}} \right)$
$\frac{{5\pi }}{3}$
Let $A = \left\{ {\theta \,:\,\sin \,\left( \theta \right) = \tan \,\left( \theta \right)} \right\}$ and $B = \left\{ {\theta \,:\,\cos \,\left( \theta \right) = 1} \right\}$ be two sets. Then
If $5\cos 2\theta + 2{\cos ^2}\frac{\theta }{2} + 1 = 0, - \pi < \theta < \pi $, then $\theta = $
In a triangle $P Q R, P$ is the largest angle and $\cos P=\frac{1}{3}$. Further the incircle of the triangle touches the sides $P Q, Q R$ and $R P$ at $N, L$ and $M$ respectively, such that the lengths of $P N, Q L$ and $R M$ are consecutive even integers. Then possible length$(s)$ of the side$(s)$ of the triangle is (are)
$(A)$ $16$ $(B)$ $18$ $(C)$ $24$ $(D)$ $22$
If $\cos \theta + \sec \theta = \frac{5}{2}$, then the general value of $\theta $ is
The general solution of the equation $(\sqrt 3 - 1)\sin \theta + (\sqrt 3 + 1)\cos \theta = 2$ is