${\sin ^2}\theta + \sin \theta = 2$ નું સમાધાન કરે તેવા $\theta $ નો વ્યાપક ઉકેલ મેળવો.
$n\pi + {( - 1)^n}\frac{\pi }{6}$
$2n\pi + \frac{\pi }{4}$
$n\pi + {( - 1)^n}\frac{\pi }{2}$
$n\pi + {( - 1)^n}\frac{\pi }{3}$
સમીકરણ $(1 + \tan x + {\tan ^2}x)$ $(1 - \cot x + {\cot ^2}x)$ ની કિમત ધન થવા માટે $x$ ની કિમત . . . થવી જોઈએ.
અહી $S=\left[-\pi, \frac{\pi}{2}\right)-\left\{-\frac{\pi}{2},-\frac{\pi}{4},-\frac{3 \pi}{4}, \frac{\pi}{4}\right\}$ આપલે છે. તો ગણ $=\{\theta \in S : \tan \theta(1+\sqrt{5} \tan (2 \theta))=\sqrt{5}-\tan (2 \theta)\}$ ની સભ્ય સંખ્યા $...$ થાય.
જો $\sqrt 3 \cos \,\theta + \sin \theta = \sqrt 2 ,$ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
સમીકરણ $a\sin x + b\cos x = c$ , કે જ્યાં $|c|\, > \,\sqrt {{a^2} + {b^2}}$ ના ઉકેલની સંખ્યા મેળવો.
$(x, y)$ની બધી જોડ મેળવો કે જેથી ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ થાય