The graph of the function $f(x)=x+\frac{1}{8} \sin (2 \pi x), 0 \leq x \leq 1$ is shown below. Define $f_1(x)=f(x), f_{n+1}(x)=f\left(f_n(x)\right)$, for $n \geq 1$.

Which of the following statements are true?

$I.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=0$

$II.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=\frac{1}{2}$

$III.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=1$

$IV.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)$ does not exist.

  • [KVPY 2016]
  • A

    $I$ and $III$ only

  • B

    $II$ only

  • C

    $I,II,III$ only

  • D

    $I, II, III$ and $IV$

Similar Questions

If $f(x)$ be a polynomial function satisfying $f(x).f (\frac{1}{x}) = f(x) + f (\frac{1}{x})$  and $f(4) = 65$ then value of $f(6)$ is

Domain of $log\,log\,log\,  ....(x)$ is 

                        $ \leftarrow \,n\,\,times\, \to $

If the function $f\,:\,R - \,\{ 1, - 1\}  \to A$ defined by $f\,(x)\, = \frac{{{x^2}}}{{1 - {x^2}}},$ is surjective, then $A$ is equal to

  • [JEE MAIN 2019]

The range of function $f : R \rightarrow  R$, $f(x) = \frac{{{{(x\, + \,1)}^4}}}{{{x^4} + \,1}}$ is

Let $f : N \rightarrow R$ be a function such that $f(x+y)=2 f(x) f(y)$ for natural numbers $x$ and $y$. If $f(1)=2$, then the value of $\alpha$ for which

$\sum \limits_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)$ holds, is

  • [JEE MAIN 2022]