फलन $f(x)=x+\frac{1}{8} \sin (2 \pi x), 0 \leq x \leq 1$ का आरेख नीचे दर्शाया गया है. यदि $f_1(x)=f(x)$ और $n \geq$ 1 के लिए $f_{n+1}(x)=f\left(f_n(x)\right)$.

तब निम्न कथनों:

$I$ अनंत $x \in[0,1]$ संभव है यदि $\lim _{n \rightarrow \infty} f_n(x)=0$.

$II$. अनंत $x \in[0,1]$ संभब है यदि $\lim _{n \rightarrow \infty} f_n(x)=\frac{1}{2}$.

$III$ अनंत $x \in[0,1]$ संभव है यदि $\lim _{n \rightarrow \infty} f_n(x)=1$.

$IV$. अन्त $x \in[0,1]$ सभव है यदि $\lim _{n \rightarrow \infty} f_n(x)$ का अस्तित्व नहीं है.

में से कौन से कथन सत्य है

  • [KVPY 2016]
  • A

    केवल $I$ एव $III$

  • B

    केवल $II$

  • C

    केवल $I, II, III$

  • D

    $I, II, III$ एवं $IV$

Similar Questions

फलन

$\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{[\mathrm{x}]^2-3[\mathrm{x}]-10}}$, (जहाँ $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है, का प्रांत है)

  • [JEE MAIN 2023]

यदि $f(x) = \frac{{{{\cos }^2}x + {{\sin }^4}x}}{{{{\sin }^2}x + {{\cos }^4}x}}$, $x \in R$ के लिए, तब $f(2002) = $

यदि $f(x) = 2\sin x$, $g(x) = {\cos ^2}x$, तो $(f + g)\left( {\frac{\pi }{3}} \right) = $

फलन $f(x) = \frac{{x + 2}}{{|x + 2|}}$ का परिसर (रेंज) है

माना $[ x ]$ महत्तम पूर्णांक $\leq x$ है, जहों $x \in R$ है। यदि वास्तविक मान फलन $f(x)=\sqrt{\frac{[x] \mid-2}{[x] \mid-3}}$ का प्रांत $(-\infty, a) \cup[b, c) \cup[4, \infty), a < b < c$, है, तो $a+b+c$ का मान है

  • [JEE MAIN 2021]