- Home
- Standard 12
- Physics
${}_{38}^{90}Sr$ નું અર્ધઆયુ $28$ years છે. આ સમસ્થાનિકના $15\, mg$ નો વિભંજન દર કેટલો હશે?
$7.878 \times 10^{10}\; atoms / s$
$4.325 \times 10^{12}\; atoms / s$
$1.684 \times 10^{8}\; atoms / s$
$5.314 \times 10^{14}\; atoms / s$
Solution
Half life of $_{38}^{90} S r, t_{1 / 2}=28$ years
$=28 \times 365 \times 24 \times 60 \times 60$
$=8.83 \times 10^{8} s$
Mass of the isotope, $m=15 mg$
$90 g$ of $_{38}^{90} Sr$ atom contains $6.023 \times 10^{23}(\text { Avogadro's number })$ atoms. Therefore, $15 mg$ of $_{38}^{90} Sr$ contains:
$\frac{6.023 \times 10^{2} \times 15 \times 10^{-3}}{90},$
i.e., $1.0038 \times 10^{20}$ Number of atomms
Rate of disintegration, $\frac{d N}{d t}=\lambda N$
Where, $\lambda=$ decay constant $=\frac{0.693}{8.83 \times 10^{8}} s^{-1}$
$\therefore \frac{d N}{d t}=\frac{0.693 \times 1.0038 \times 10^{20}}{8.83 \times 10^{8}}=7.878 \times 10^{10}$ atoms $/ s$
Hence, the disintegration rate of $15 mg$ of the given isotope is $7.878 \times 10^{10}\; atoms / s$