13.Nuclei
medium

The half life period of a radioactive element $X$ is same as the mean life time of another radioactive element $Y$. Initially both of them have the same number of atoms. Then

A

$X$ and $Y$ have the same decay rate initially

B

$X$ and $Y$ decay at the same rate always

C

$Y$ will decay at a faster rate than $X$

D

$X$ will decay at a faster rate than $Y$

(IIT-1999)

Solution

(c) ${({T_{1/2}})_x} = {({t_{mean}})_y}$

$ \Rightarrow \frac{{0.693}}{{{\lambda _x}}} = \frac{1}{{{\lambda _y}}} $

$\Rightarrow {\lambda _x} = 0.693\,{\lambda _y}$ or $\lambda x <  \lambda y$ 

Also rate of decay = $\lambda N$

Initially number of atoms $(N)$ of both are equal but since ${\lambda _y} > {\lambda _x},$ therefore, $y$ will decay at a faster rate than $x.$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.