The incident photon involved in the photoelectric effect experiment.
Completely disappears
Comes out with an increased frequency
Comes out with a decreased frequency
Comes out without change in frequency
Ultraviolet light of wavelength $300 \ nm$ and intensity $1.0 \ watt/m^2$ falls on the surface of a photosensitive material. If $1\%$ of the incident photons produce photoelectrons, then the number of photoelectrons emitted from an area of $1.0\ cm^2$ of the surface is nearly
An important spectral emission line has a wavelength of $21 cm$. The corresponding photon energy is
$(h = 6.62 \times {10^{ - 34}}Js;\;\;c = 3 \times {10^8}m/s)$
When monochromatic radiation of intensity $I$ falls on a metal surface, the number of photoelectrons and their maximum kinetic energy are $N$ and $K$ respectively. If the intensity of radiation is $2I$, the number of emitted electrons and their maximum kinetic energy are respectively