वायु की अवरोधकता $E = 3 \times {10^6}\, V/m$ की वैद्युत तीव्रता पर टूट जाती है। कूलॉम मात्रक में $5$ मी व्यास के गोलाकार को कितना अधिकतम आवेश दिया जा सकता है
$2 \times {10^{ - 2}}$
$2 \times {10^{ - 3}}$
$2 \times {10^{ - 4}}$
$2 \times {10^{ - 5}}$
चित्रानुसार छड़ $AB , 120^{\circ}$ पर $R$ त्रिज्या के चाप में मोड़ी जाती है। आवेश $(- Q )$ छड़ $AB$ पर एकसमान रूप से वितरित होता है। वक्रता केन्द्र $O$ पर विधुत क्षेत्र $\overrightarrow{ E }$ क्या होगा ?
$ABC$ एक समबाहु त्रिभुज है। प्रत्येक शीर्ष पर $ + \,q$ आवेश रखा गया है। बिन्दु $O$ पर वैद्युत क्षेत्र की तीव्रता होगी
$\pm 10 \,\mu C$ के दो आवेश एक-दूसरे से $5.0\, mm$ दूरी पर स्थित हैं। $(a)$ इस द्विधुव के अक्ष पर द्विध्रुव के केंद्र $O$ से चित्र $(a)$ में दशांए अनुसार, धनावेश की ओर $15 \,cm$ दूरी पर स्थित किसी बिदु $P$ पर तथा $(b)$ द्धिध्रुव के अक्ष के अभिलंबवत $O$ से, चित्र $(b)$ में दर्शाए अनुसार गुजरने वाली रेखा से $15\, cm$ दूरी पर स्थित किसी बिंदु $G$ पर विध्युत क्षेत्र ज्ञात कीजिए।
$q$ परिमाण के अनन्त आवेश $x$-अक्ष पर $x$ =$1\,, 2\,, 4\,, 8...$ मीटर दूरियों पर रखे हैं। इन आवेशों के कारण $x = 0$ पर विद्युत क्षेत्र का मान होगा
हाइड्रोजन परमाणु में प्रोटॉन व इलेक्ट्रॉन के बीच की दूरी ${10^{ - 10}}$ मीटर है। इन दोनों पर आवेश का परिमाण $1.6 \times {10^{ - 19}}\,C$ है। प्रोटॉन के कारण इलेक्ट्रॉन पर उत्पé विद्युत क्षेत्र की तीव्रता का मान होगा