मिलिकन तेल बूँद प्रयोग में $2.55 \times 10^{4} \,N C ^{-1}$ के नियत विध्यूत क्षेत्र के प्रभाव में $12$ इलेक्ट्रोंन आधिक्य की कोई तेल बूँद स्थिर रखी जाती है। तेल का घनत्व $1.26\, g cm ^{-3}$ है। बूँद की त्रिज्या का आकलन कीजिए $\left(g=9.81 m s ^{-2} ; e=1.60 \times 10^{-19} C \right) 1$
$7.24 \times 10^{-4} \;cm$.
$9.82 \times 10^{-4} \;mm$.
$8.34 \times 10^{-4} \;m$.
$4.25 \times 10^{-5} \;mm$.
$L (=20 cm )$ लम्बाई के एक तार को एक अर्ध वृत्ताकार चाप के रूप में मोड़ दिया गया है। यदि इस चाप के दो समान भागों को $\pm Q$ आवेश से एकसमान आवेशित कर दिया जाय $\left[| Q |=10^{3} \varepsilon_{0}\right.$ कूलॉम जहाँ $\varepsilon_{0}$ ($SI$ मात्रक में) मुक्त आकाश की विद्युतशीलता (परावैद्युतांक) है ], तो, अर्धवृत्ताकार चाप के केन्द्र $O$ पर नेट विद्युत क्षेत्र होगा :
दो आवेश $q$ व $3 q$ वायु में ' $r$ ' दूरी पर स्थित है। $\mathrm{q}$ आवेश से $\mathrm{x}$ दूरी पर परिणामी वैद्युत क्षेत्र शून्य है। $\mathrm{x}$ का मान है
$\sigma$ सतह आवेश घनत्व से $R$ त्रिज्या की समानरूप से आवेशित एक चकती $x-y$ तल में रखी है, जिसका केन्द्र मूलबिन्दु पर है। $z$-अक्ष के अनुदिश मूल बिन्दु से $Z$ दूरी पर विधुत क्षेत्र की तीव्रता ज्ञात कीजिए।
किसी सपाट वृत्तीय चकती पर आवेश $ + Q$ एकसमान वितरित है। आवेश$ + q$ को $E$ गतिज ऊर्जा से चकती की ओर, इसके लम्बवत् अक्ष के अनुदिश फेंका जाता है। आवेश $q$
समान द्रव्यमान तथा आवेश के दो एकसमान अचालक ठोस गोलों को समान लम्बाई की दो अचालक, द्रव्यमानहीन डोरियों द्वारा एक उभयनिष्ठ बिन्दु से वायु में लटकाया जाता है। साम्यावस्था पर, डोरियों के मध्य कोण $\alpha$ है। अब गोलों को $800 kg m ^{-3}$ घनत्व तथा परावैद्युतांक $21$ के परावैद्युत द्रव में डुबाया जाता है। यदि डुबाने के बाद डोरियों के मध्य कोण समान रहता है, तब
$(A)$ गोलों के मध्य विद्युत बल अपरिवर्तित रहता है।
$(B)$ गोलों के मध्य विद्युत बल घटता है।
$(C)$ गोलों का द्रव्यमान घनत्व $840 kg m ^{-3}$ है।
$(D)$ गोलों को सम्भालने वाली डोरियों में तनाव अपरिवर्तित रहता है।