The internal and external radii of a hollow cylinder are measured with the help of a vernier callipers.Their values are $(4.23 \pm 0.01)\,\,cm$ and $(3.87 \pm 0.01)\,\,cm,$ respectively. The thickness of the wall of the cylinder is

  • A

    $(0.36 \pm 0.02)\,\,cm$

  • B

    $(0.18 \pm 0.02)\,\,cm$

  • C

    $(0.36 \pm 0.01)\,\,cm$

  • D

    $(0.18 \pm 0.01)\,\,cm$

Similar Questions

If the measurement errors in all the independent quantities are known, then it is possible to determine the error in any dependent quantity. This is done by the use of series expansion and truncating the expansion at the first power of the error. For example, consider the relation $z=x / y$. If the errors in $x, y$ and $z$ are $\Delta x, \Delta y$ and $\Delta z$, respectively, then

$\mathrm{z} \pm \Delta \mathrm{z}=\frac{\mathrm{x} \pm \Delta \mathrm{x}}{\mathrm{y} \pm \Delta \mathrm{y}}=\frac{\mathrm{x}}{\mathrm{y}}\left(1 \pm \frac{\Delta \mathrm{x}}{\mathrm{x}}\right)\left(1 \pm \frac{\Delta \mathrm{y}}{\mathrm{y}}\right)^{-1} .$

The series expansion for $\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$, to first power in $\Delta y / y$, is $1 \mp(\Delta y / y)$. The relative errors in independent variables are always added. So the error in $\mathrm{z}$ will be $\Delta \mathrm{z}=\mathrm{z}\left(\frac{\Delta \mathrm{x}}{\mathrm{x}}+\frac{\Delta \mathrm{y}}{\mathrm{y}}\right)$.

The above derivation makes the assumption that $\Delta x / x<<1, \Delta \mathrm{y} / \mathrm{y} \ll<1$. Therefore, the higher powers of these quantities are neglected.

($1$) Consider the ratio $\mathrm{r}=\frac{(1-\mathrm{a})}{(1+\mathrm{a})}$ to be determined by measuring a dimensionless quantity a.

If the error in the measurement of $\mathrm{a}$ is $\Delta \mathrm{a}(\Delta \mathrm{a} / \mathrm{a} \ll<1)$, then what is the error $\Delta \mathrm{r}$ in

$(A)$ $\frac{\Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(B)$ $\frac{2 \Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(C)$ $\frac{2 \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$ $(D)$ $\frac{2 \mathrm{a} \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$

($2$) In an experiment the initial number of radioactive nuclei is $3000$ . It is found that $1000 \pm$ $40$ nuclei decayed in the first $1.0 \mathrm{~s}$. For $|\mathrm{x}| \ll 1$, In $(1+\mathrm{x})=\mathrm{x}$ up to first power in $x$. The error $\Delta \lambda$, in the determination of the decay constant $\lambda$, in $\mathrm{s}^{-1}$, is

$(A) 0.04$    $(B) 0.03$    $(C) 0.02$   $(D) 0.01$

Give the answer quetion ($1$) and ($2$)

  • [IIT 2018]

If $x=10.0 \pm 0.1$ and $y=10.0 \pm 0.1$, then $2 x-2 y$ is equal to

A public park, in the form of a square, has an area of $(100 \pm 0.2) m ^2$. The side of park is ......... $m$

A cylindrical wire of mass $(0.4 \pm 0.01)\,g$ has length $(8 \pm 0.04)\,cm$ and radius $(6 \pm 0.03)\,mm$.The maximum error in its density will be $......\,\%$

  • [JEE MAIN 2023]

If $Q= \frac{X^n}{Y^m}$ and $\Delta X$ is absolute error in the measurement of $X,$ $\Delta Y$ is absolute error in the measurement of $Y,$ then absolute error $\Delta Q$ in $Q$ is