Two resistors of resistances $R_{1}=100 \pm 3$ $ohm$ and $R_{2}=200 \pm 4$ $ohm$ are connected $(a)$ in series, $(b)$ in parallel. Find the equivalent resistance of the $(a)$ series combination, $(b)$ parallel combination. Use for $(a)$ the relation $R=R_{1}+R_{2}$ and for $(b)$ $\frac{1}{R^{\prime}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ and $\frac{\Delta R^{\prime}}{R^{\prime 2}}=\frac{\Delta R_{1}}{R_{1}^{2}}+\frac{\Delta R_{2}}{R_{2}^{2}}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ The equivalent resistance of serles combination

$R=R_{1}+R_{2}=(100 \pm 3)$ $ohm$ $+(200 \pm 4)$ $ohm$

$=300 \pm 7 \text { ohm. }$

$(b)$ The equivalentl resistance of parallel combination

$R^{\prime}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{200}{3}=66.7$ $ohm$

Then, from $\frac{1}{R^{\prime}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$

we get,

$\frac{\Delta R^{\prime}}{R^{2}}=\frac{\Delta R_{1}}{R_{1}^{2}}+\frac{\Delta R_{2}}{R_{2}^{2}}$

$\Delta R^{\prime}=\left(R^{2}\right) \frac{\Delta R_{1}}{R_{1}^{2}}+\left(R^{2}\right) \frac{\Delta R_{2}}{R_{2}^{2}}$

$=\left(\frac{66.7}{100}\right)^{2} 3+\left(\frac{66.7}{200}\right)^{2} 4$

$=1.8$

Then, $R^{\prime}=66.7 \pm 1.8$ $ohm$

(Here, $\Delta R$ is expresed as $1.8$ instead of $2$ to keep in confirmity with the rules of stgnificant figures.

Similar Questions

The density of a solid metal sphere is determined by measuring its mass and its diameter. The maximum error in the density of the sphere is $\left(\frac{x}{100}\right) \% .$ If the relative errors in measuring the mass and the diameter are $6.0 \%$ and $1.5 \%$ respectively, the value of $x$ is

  • [JEE MAIN 2020]

If $x = a -b,$ then percentage error in $x$ will be

The radius of a sphere is $(5.3 \pm 0.1) \,cm$. The percentage error in its volume is

Two resistance are measured in $Ohm$ and is given as

$R_1 = 3 \Omega \pm 1\%$  and  $R_2 = 6 \Omega \pm 2\%$ When they are connected  in parallel, the percentage error in equivalent resistance is.......... $\%$

In Ohm's experiment, the value of an unknown resistance were found to be $4.12\; \Omega, 4.08 \;\Omega, 4.22 \;\Omega$ and $4.14 \;\Omega$. Calculate absolute error and relative error in these measurement.