Two resistors of resistances $R_{1}=100 \pm 3$ $ohm$ and $R_{2}=200 \pm 4$ $ohm$ are connected $(a)$ in series, $(b)$ in parallel. Find the equivalent resistance of the $(a)$ series combination, $(b)$ parallel combination. Use for $(a)$ the relation $R=R_{1}+R_{2}$ and for $(b)$ $\frac{1}{R^{\prime}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ and $\frac{\Delta R^{\prime}}{R^{\prime 2}}=\frac{\Delta R_{1}}{R_{1}^{2}}+\frac{\Delta R_{2}}{R_{2}^{2}}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ The equivalent resistance of serles combination

$R=R_{1}+R_{2}=(100 \pm 3)$ $ohm$ $+(200 \pm 4)$ $ohm$

$=300 \pm 7 \text { ohm. }$

$(b)$ The equivalentl resistance of parallel combination

$R^{\prime}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{200}{3}=66.7$ $ohm$

Then, from $\frac{1}{R^{\prime}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$

we get,

$\frac{\Delta R^{\prime}}{R^{2}}=\frac{\Delta R_{1}}{R_{1}^{2}}+\frac{\Delta R_{2}}{R_{2}^{2}}$

$\Delta R^{\prime}=\left(R^{2}\right) \frac{\Delta R_{1}}{R_{1}^{2}}+\left(R^{2}\right) \frac{\Delta R_{2}}{R_{2}^{2}}$

$=\left(\frac{66.7}{100}\right)^{2} 3+\left(\frac{66.7}{200}\right)^{2} 4$

$=1.8$

Then, $R^{\prime}=66.7 \pm 1.8$ $ohm$

(Here, $\Delta R$ is expresed as $1.8$ instead of $2$ to keep in confirmity with the rules of stgnificant figures.

Similar Questions

Write rule for error in result due to multiplication and division.

The following observations were taken for determining surface tension $T$ of water by capillary method:

diameter of capillary, $D= 1.25 \times 10^{-2}\; m$

rise of water, $h=1.45 \times 10^{-2}\; m $ 

Using $g= 9.80 \;m/s^2$ and the simplified relation $T = \frac{{rhg}}{2}\times 10^3 N/m$ , the possible error in surface tension is ........... $\%$

  • [JEE MAIN 2017]

If the percentage errors in measuring the length and the diameter of a wire are $0.1 \%$ each. The percentage error in measuring its resistance will be:

  • [JEE MAIN 2024]

The radius ( $\mathrm{r})$, length $(l)$ and resistance $(\mathrm{R})$ of a metal wire was measured in the laboratory as
$\mathrm{r}=(0.35 \pm 0.05) \mathrm{cm}$
$\mathrm{R}=(100 \pm 10) \mathrm{ohm}$
$l=(15 \pm 0.2) \mathrm{cm}$
The percentage error in resistivity of the material of the wire is :

  • [JEE MAIN 2024]

A student in the laboratory measures thickness of a wire using screw gauge. The readings are $1.22\,mm , 1.23\,mm , 1.19\,mm$ and $1.20\,mm$. The percentage error is $\frac{ x }{121} \%$. The value of $x$ is ..............

  • [JEE MAIN 2022]