7.Binomial Theorem
hard

The interval in which $x$ must lie so that the greatest term in the expansion of ${(1 + x)^{2n}}$ has the greatest coefficient, is

A

$\left( {\frac{{n - 1}}{n},\frac{n}{{n - 1}}} \right)$

B

$\left( {\frac{n}{{n + 1}},\frac{{n + 1}}{n}} \right)$

C

$\left( {\frac{n}{{n + 2}},\frac{{n + 2}}{n}} \right)$

D

None of these

Solution

(b) Here the greatest coefficient is $^{2n}{C_n}$

$\therefore \,\,{\,^{2n}}{C_n}{x^n}{ > ^{2n}}{C_{n + 1}}{x^{n – 1}} \Rightarrow x > \frac{n}{{n + 1}}$

and $^{2n}{C_n}{x^n} > {\,^{2n}}{C_{n – 1}}{x^{n + 1}} \Rightarrow x < \frac{{n + 1}}{n}$

Hence the required interval is $\left( {\frac{n}{{n + 1}},\,\frac{{n + 1}}{n}} \right)$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.