Gujarati
7.Binomial Theorem
hard

The coefficients of three consecutive terms of $(1+x)^{n+5}$ are in the ratio $5: 10: 14$. Then $n=$

A

$5$

B

$6$

C

$7$

D

$8$

(IIT-2013)

Solution

${ }^{n+5} C_{r-1}:{ }^{n+5} C_r:{ }^{n+5} C_{r+1}=5: 10: 14 $

$\Rightarrow \quad \frac{{ }^{n+5} C_r}{{ }^{n+5} C_{r-1}}=\frac{10}{5} \quad \& \quad \frac{{ }^{n+5} C_{r+1}}{{ }^{n+5} C_r}=\frac{14}{10} $

$\Rightarrow \quad \frac{(n+5)-r+1}{r}=2 \quad \& \quad \frac{(n+5)-(r+1)+1}{r+1}=\frac{7}{5}$

$\Rightarrow \quad \frac{n+6}{r}=3 \quad  \&  \quad \frac{n+6}{r+1}=\frac{12}{5} $

$\Rightarrow \quad 3 r=\frac{12}{5}(r+1) $

$\Rightarrow \quad r=4 $

$\therefore \quad n+6=12 \quad \Rightarrow \quad n=6 $

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.