The coefficients of three consecutive terms of $(1+x)^{n+5}$ are in the ratio $5: 10: 14$. Then $n=$

  • [IIT 2013]
  • A

    $5$

  • B

    $6$

  • C

    $7$

  • D

    $8$

Similar Questions

If the middle term in the expansion of ${\left( {{x^2} + \frac{1}{x}} \right)^n}$ is $924{x^6}$, then $n = $

Coefficient of $x^6$ in the binomial expansion ${\left( {\frac{{4{x^2}}}{3}\; - \;\frac{3}{{2x}}} \right)^9}$ is

Find the expansion of $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ using binomial theorem

Find the coefficient of $x^{5}$ in the product $(1+2 x)^{6}(1-x)^{7}$ using binomial theorem.

The term independent of $x$ in expansion of ${\left( {\frac{{x + 1}}{{{x^{2/3}} - {x^{\frac{1}{3}}} + 1\;}}--\frac{{x - 1}}{{x - {x^{1/2}}}}} \right)^{10}}$ is

  • [JEE MAIN 2013]