विद्युत आवेशों के मध्य लगने वाले बलों से सम्बन्धित नियम है
ऐम्पियर का नियम
ओह्म का नियम
फैराडे का नियम
कूलॉम का नियम
कूलॉम का नियम आवेशों के मध्य बल की गणना में उपयुक्त है
तीन आवेशों $q_{1}, q_{2}, q_{3}$ पर विचार कीजिए जिनमें प्रत्येक $q$ के बराबर है तथा $l$ भुजा वाले समबाहु त्रिभुज के शीर्षों पर स्थित है। त्रिभुज के केंद्रक पर चित्र में दर्शाए अनुसार स्थित आवेश $Q$ (जो $q$ का सजातीय ) पर कितना परिणामी बल लग रहा है?
समान परिमाण के दो आवेश एक दूसरे से $r$ दूरी पर स्थित हैं और इनके मध्य कार्यरत बल $F$ है। यदि आवेशों के मान आधे कर दिये जायें एवं इनके मध्य की दूरी को दो गुनी कर दी जाये तो इनके मध्य नया बल होगा
एक वर्ग के विपरीत कोनों में प्रत्येक पर एक आवेश $Q$ रखा है। दूसरे दो विपरीत कोनों पर आवेश $q$ रखा है। यदि $Q$ पर परिणामी विद्युत बल शून्य है, तब $\frac{Q}{q}$ का मान है।
दो एकसमान धात्विक गोले $A$ और $B$ जब हवा में एक निश्चित दूरी पर रखे जाते है तो एक-दूसरे को $F$ बल से प्रतिकर्षित करते हैं। एक और समरूप अनावेशित गोला $C$, पहले $A$ के सम्पर्क में, फिर $B$ के सम्पर्क में और अंत में $A$ और $B$ के मध्य बिन्दू पर रखा जाता है। गोले $C$ द्वारा अनुभव किया बल होगा :
$(a)$ दो विध्यूतरोधी आवेशित ताँबे के गोलों $A$ तथा $B$ के केंद्रों के बीच की दूरी $50 \,cm$ है। यद् दोनों गोलों पर पृथक-पृथक आवेश $6.5 \times 10^{-7} C$ हैं, तो इनमें पारस्परिक स्थिरवैध्यूत प्रतिकर्षण बल कितना है? गोलों के बीच की दूरी की तुलना में गोलों $A$ तथा $B$ की त्रिज्याएँ नगण्य हैं।
$(b)$ यदि प्रत्येक गोले पर आवेश की मात्रा दो गुनी तथा गोलों के बीच की दूरी आधी कर दी जाए तो प्रत्येक गोले पर कितना बल लगेगा?
Confusing about what to choose? Our team will schedule a demo shortly.