तीन आवेशों $q_{1}, q_{2}, q_{3}$ पर विचार कीजिए जिनमें प्रत्येक $q$ के बराबर है तथा $l$ भुजा वाले समबाहु त्रिभुज के शीर्षों पर स्थित है। त्रिभुज के केंद्रक पर चित्र में दर्शाए अनुसार स्थित आवेश $Q$ (जो $q$ का सजातीय ) पर कितना परिणामी बल लग रहा है?
In the given equilateral triangle $ABC$ of sides of length $l$, if Iraw a perpendicular $AD$ to the side $BC,$
$A D=A C \cos 30^{\circ}=(\sqrt{3} / 2) l$ and the distance $AO$ of the centroid $O$ from $A$ is $(2 / 3) AD =(1 / \sqrt{3})$ $l$. By symmatry $AO = BO = CO$
Thus,
Force $F _{1}$ on $Q$ due to charge $q$ at $A =\frac{3}{4 \pi \varepsilon_{0}} \frac{ Q q}{l^{2}}$ along $AO$
Force $F _{2}$ on $Q$ due to charge $q$ at $B =\frac{3}{4 \pi \varepsilon_{0}} \frac{ Q q}{l^{2}}$ along $BO$
Force $F_{3}$ on $Q$ due to charge $q$ at $C=\frac{3}{4 \pi \varepsilon_{0}} \frac{Q q}{l^{2}}$ along $CO$
The resultant of forces $F _{2}$ and $F _{3}$ is $\frac{3}{4 \pi \varepsilon_{0}} \frac{Q q}{l^{2}}$ along $OA$. by the parallelogram law. Therefore, the total force on $g=\frac{3}{4 \pi \varepsilon_{0}} \frac{Q q}{l^{2}}(\hat{ r }-\hat{ r })$
$=0,$ where $\hat{ r }$ is the unit vector along $OA$.
It is clear also by symmetry that the three forces will sum to zero. Suppose that the resultant force was non-zero but in some direction. Consider what would happen if the system was rotated through $60^{\circ}$ about $O$.
दो प्रत्येक $1$ कूलॉम आवेशों को $1$ किमी की दूरी पर रखने से उनके मध्य लगने वाला बल होगा
दो बिन्दु आवेश $ + \,9e$ तथा $ + \,e$ एक दूसरे से $16$ सेमी. दूर स्थित हैं। अन्य आवेश $q$ को इनके बीच कहाँ रखा जाये कि निकाय सन्तुलन अवस्था में हो
चार बिंदु आवेश $q_{ A }=2 \mu C , q_{ B }=-5 \mu C , q_{ C }=2 \mu C$ तथा $q_{ D }=-5 \mu C , 10 cm$ भुजा के किसी वर्ग $ABCD$ के शीर्षों पर अवस्थित हैं। वर्ग के केंद्र पर रखे $1 \mu C$ आवेश पर लगने वाला बल कितना है?
दो बिन्दु आवेशों $Q$ व $ - Q$ जो $d$ दूरी पर हैं, के बीच लगने वाले आकर्षण बल का मान ${F_e}$ है। जब इन आवेशों को दो एकसमान गोलों पर जिसकी त्रिज्या $R = 0.3\,d$, एवं जिनके केन्द्र के बीच की दूरी $d$ मीटर है, रख दिया जाता है, तो उनके बीच कार्य करने वाले आकर्षण बल का मान है
$-q$ आवेश तथा $m$ द्रव्यमान का एक कण $+\lambda$. रेखीय आवेश घनत्व के एक अनंत लम्बे रेखीय आवेश के परितः $r$ त्रिज्या के एक वृत्त में गति करता है। तब इसका आवर्त काल होगा
( $k$ को कूलॉम नियतांक मानकर)