Let a line $L_{1}$ be tangent to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{4}=1$ and let $L_{2}$ be the line passing through the origin and perpendicular to $L _{1}$. If the locus of the point of intersection of $L_{1}$ and $L_{2}$ is $\left(x^{2}+y^{2}\right)^{2}=$ $\alpha x^{2}+\beta y^{2}$, then $\alpha+\beta$ is equal to

  • [JEE MAIN 2022]
  • A

    $11$

  • B

    $12$

  • C

    $15$

  • D

    $16$

Similar Questions

The equation of a line passing through the centre of a rectangular hyperbola is $x -y -1 = 0$. If one of the asymptotes is $3x -4y -6 = 0$, the equation of other asymptote is

The equation of the hyperbola referred to its axes as axes of coordinate and whose distance between the foci is $16$ and eccentricity is $\sqrt 2 $, is

If the centre, vertex and focus of a hyperbola be $(0, 0), (4, 0)$ and $(6, 0)$ respectively, then the equation of the hyperbola is

For $0<\theta<\pi / 2$, if the eccentricity of the hyperbola $\mathrm{x}^2-\mathrm{y}^2 \operatorname{cosec}^2 \theta=5$ is $\sqrt{7}$ times eccentricity of the ellipse $x^2 \operatorname{cosec}^2 \theta+y^2=5$, then the value of $\theta$ is :

  • [JEE MAIN 2024]

The equation of the tangent at the point $(a\sec \theta ,\;b\tan \theta )$ of the conic $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, is