The length of the latus rectum of an ellipse is $\frac{1}{3}$ of the major axis. Its eccentricity is

  • A

    $\frac{2}{3}$

  • B

    $\sqrt {\frac{2}{3}} $

  • C

    $\frac{{5 \times 4 \times 3}}{{{7^3}}}$

  • D

    ${\left( {\frac{3}{4}} \right)^4}$

Similar Questions

In an ellipse, its foci and ends of its major axis are equally spaced. If the length of its semi-minor axis is $2 \sqrt{2}$, then the length of its semi-major axis is

  • [KVPY 2014]

On the ellipse $\frac{{{x^2}}}{{18}} + \frac{{{y^2}}}{8} = 1$ the point $M$ nearest to the line $2x - 3y + 25 = 0$ is

The equations of the common tangents to the ellipse, $ x^2 + 4y^2 = 8 $ $\&$  the parabola $y^2 = 4x$  can be

If $P$ lies in the first quadrant on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ (where $a > b$ ), and tangent & normal drawn at $P$ meets major axis at the points $T$ & $N$ respectively, then the value of $\frac{{\left( {\left| {{F_2}N} \right| + \left| {{F_1}N} \right|} \right)\left( {\left| {{F_2}T} \right| - \left| {{F_1}T} \right|} \right)}}{{\left( {\left| {{F_2}N} \right| - \left| {{F_1}N} \right|} \right)\left( {\left| {{F_2}T} \right| + \left| {{F_1}T} \right|} \right)}}$ is equal to (where $F_1$ & $F_2$ are the foci $(ae, 0)$ & $(-ae, 0)$ respectively)

The smallest possible positive slope of a line whose $y$-intercept is $5$ and which has a common point with the ellipse $9 x^2+16 y^2=144$ is

  • [KVPY 2011]