The length of the latus rectum of an ellipse is $\frac{1}{3}$ of the major axis. Its eccentricity is

  • A

    $\frac{2}{3}$

  • B

    $\sqrt {\frac{2}{3}} $

  • C

    $\frac{{5 \times 4 \times 3}}{{{7^3}}}$

  • D

    ${\left( {\frac{3}{4}} \right)^4}$

Similar Questions

The eccentricity of an ellipse, with its centre at the origin, is $\frac{1}{2}$. If one of the directrices is $x = 4$, then the equation of the ellipse is

  • [AIEEE 2004]

Let $T_1$ and $T_2$ be two distinct common tangents to the ellipse $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ and the parabola $P: y^2=12 x$. Suppose that the tangent $T_1$ touches $P$ and $E$ at the point $A_1$ and $A_2$, respectively and the tangent $T_2$ touches $P$ and $E$ at the points $A_4$ and $A_3$, respectively. Then which of the following statements is(are) true?

($A$) The area of the quadrilateral $A_1 A _2  A _3 A _4$ is $35$ square units

($B$) The area of the quadrilateral $A_1 A_2 A_3 A_4$ is $36$ square units

($C$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-3,0)$

($D$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-6,0)$

  • [IIT 2023]

The locus of the point of intersection of perpendicular tangents to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, is

An ellipse passes through the point $(-3, 1)$ and its eccentricity is $\sqrt {\frac{2}{5}} $. The equation of the ellipse is

On the ellipse $4{x^2} + 9{y^2} = 1$, the points at which the tangents are parallel to the line $8x = 9y$ are

  • [IIT 1999]