The length of the latus rectum of the ellipse $5{x^2} + 9{y^2} = 45$ is
$\sqrt 5 /4$
$\sqrt 5 /2$
$5/3$
$10/3$
Eccentricity of the ellipse whose latus rectum is equal to the distance between two focus points, is
The tangent and normal to the ellipse $3x^2 + 5y^2 = 32$ at the point $P(2, 2)$ meet the $x-$ axis at $Q$ and $R,$ respectively. Then the area(in sq. units) of the triangle $PQR$ is
If the minimum area of the triangle formed by a tangent to the ellipse $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{4 a^{2}}=1$ and the co-ordinate axis is $kab,$ then $\mathrm{k}$ is equal to ..... .
Let the eccentricity of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$, be $\frac{1}{4}$. If this ellipse passes through the point $\left(-4 \sqrt{\frac{2}{5}}, 3\right)$, then $a^{2}+b^{2}$ is equal to
A tangent having slope of $-\frac{4}{3}$ to the ellipse $\frac{{{x^2}}}{{18}}$ + $\frac{{{y^2}}}{{32}}$ $= 1$ intersects the major and minor axes in points $A$ and $ B$ respectively. If $C$ is the centre of the ellipse then the area of the triangle $ ABC$ is : .............. $\mathrm{sq. \,units}$