Let $\mathrm{A}(\alpha, 0)$ and $\mathrm{B}(0, \beta)$ be the points on the line $5 x+7 y=50$. Let the point $P$ divide the line segment $A B$ internally in the ratio $7: 3$. Let $3 x-$ $25=0$ be a directrix of the ellipse $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ and the corresponding focus be $S$. If from $S$, the perpendicular on the $\mathrm{x}$-axis passes through $\mathrm{P}$, then the length of the latus rectum of $\mathrm{E}$ is equal to

  • [JEE MAIN 2024]
  • A

     $\frac{25}{3}$

  • B

     $\frac{32}{9}$

  • C

    $\frac{25}{9}$

  • D

    $\frac{32}{5}$

Similar Questions

If the normal at an end of a latus rectum of an ellipse passes through an extremity of the minor axis, then the eccentricity $e$ of the ellipse satisfies

  • [JEE MAIN 2020]

Tangents at extremities of latus rectum of ellipse $3x^2 + 4y^2 = 12$ form a rhombus of area (in $sq.\ units$) -

If the length of the minor axis of ellipse is equal to half of the distance between the foci, then the eccentricity of the ellipse is :

  • [JEE MAIN 2024]

Number of common tangents of the ellipse  $\frac{{{{\left( {x - 2} \right)}^2}}}{9} + \frac{{{{\left( {y + 2} \right)}^2}}}{4} = 1$ and the circle $x^2 + y^2 -4x + 2y + 4 = 0$ is 

If any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ cuts off intercepts of length $h$ and $k$ on the axes, then $\frac{{{a^2}}}{{{h^2}}} + \frac{{{b^2}}}{{{k^2}}} = $