- Home
- Standard 11
- Mathematics
Let $\mathrm{A}(\alpha, 0)$ and $\mathrm{B}(0, \beta)$ be the points on the line $5 x+7 y=50$. Let the point $P$ divide the line segment $A B$ internally in the ratio $7: 3$. Let $3 x-$ $25=0$ be a directrix of the ellipse $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ and the corresponding focus be $S$. If from $S$, the perpendicular on the $\mathrm{x}$-axis passes through $\mathrm{P}$, then the length of the latus rectum of $\mathrm{E}$ is equal to
$\frac{25}{3}$
$\frac{32}{9}$
$\frac{25}{9}$
$\frac{32}{5}$
Solution

$\left.\begin{array}{l}\mathrm{A}=(10,0) \\ \mathrm{B}=\left(0, \frac{50}{7}\right)\end{array}\right\} \mathrm{P}=(3,5)$
$\mathrm{ae}=3$
$\frac{\mathrm{a}}{\mathrm{e}}=\frac{25}{3}$
$\mathrm{a}=5$
$\mathrm{~b}=4$
Length of $L R=\frac{2 b^2}{a}=\frac{32}{5}$