10-2. Parabola, Ellipse, Hyperbola
hard

The line $x =8$ is the directrix of the ellipse $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ with the corresponding focus $(2,0)$. If the tangent to $E$ at the point $P$ in the first quadrant passes through the point $(0,4 \sqrt{3})$ and intersects the $x$-axis at $Q$, then $(3PQ)^2$ is equal to $........$

A

$38$

B

$39$

C

$35$

D

$36$

(JEE MAIN-2023)

Solution

$\frac{ a }{ e }=8 \ldots \ldots \ldots(1) \quad ae =2$

$8 e =\frac{2}{ e }$

$e ^2=\frac{1}{4} \Rightarrow e =\frac{1}{2}$

$a =4$

$b ^2= a ^2\left(1- e ^2\right)$

$=16\left(\frac{3}{4}\right) \quad=12$

$\frac{ x \cos \theta}{4}+\frac{ y \sin \theta}{2 \sqrt{3}}=1$

$\sin \theta=\frac{1}{2}$

$\theta=30^{\circ}$

$P (2 \sqrt{3}, \sqrt{3})$

$Q \left(\frac{8}{\sqrt{3}}, 0\right)$

$(3 PQ )^2=39$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.