The line $lx + my - n = 0$ will be tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, if

  • A

    ${a^2}{l^2} + {b^2}{m^2} = {n^2}$

  • B

    $a{l^2} + b{m^2} = {n^2}$

  • C

    ${a^2}l + {b^2}m = n$

  • D

    None of these

Similar Questions

The ellipse $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ is inscribed in a rectangle $R$ whose sides are parallel to the coordinate axes.

Another ellipse $E _2$ passing through the point $(0,4)$ circumscribes the rectangle $R$.. The eccentricity of the ellipse $E _2$ is

  • [IIT 2012]

Product of slopes of common tangents to the ellipse $\frac{x^2}{32} + \frac{y^2}{8} = 1$ and parabola $y^2 = 8x$ is -

In an ellipse, its foci and ends of its major axis are equally spaced. If the length of its semi-minor axis is $2 \sqrt{2}$, then the length of its semi-major axis is

  • [KVPY 2014]

A focus of an ellipse is at the origin. The directrix is the line $x = 4$ and the eccentricity is $ \frac{1}{2}$ . Then the length of the semi-major axis is

  • [AIEEE 2008]

If the length of the latus rectum of the ellipse $x^{2}+$ $4 y^{2}+2 x+8 y-\lambda=0$ is $4$ , and $l$ is the length of its major axis, then $\lambda+l$ is equal to$......$

  • [JEE MAIN 2022]