The pole of the straight line $x + 4y = 4$ with respect to ellipse ${x^2} + 4{y^2} = 4$ is
$(1, 4)$
$(1, 1)$
$(4, 1)$
$(4, 4)$
The number of real tangents that can be drawn to the ellipse $3x^2 + 5y^2 = 32$ passing through $(3, 5)$ is
The centre of the ellipse$\frac{{{{(x + y - 2)}^2}}}{9} + \frac{{{{(x - y)}^2}}}{{16}} = 1$ is
If the tangent to the parabola $y^2 = x$ at a point $\left( {\alpha ,\beta } \right)\,,\,\left( {\beta > 0} \right)$ is also a tangent to the ellipse, $x^2 + 2y^2 = 1$, then $a$ is equal to
Locus of the foot of the perpendicular drawn from the centre upon any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, is
The tangent and normal to the ellipse $3x^2 + 5y^2 = 32$ at the point $P(2, 2)$ meet the $x-$ axis at $Q$ and $R,$ respectively. Then the area(in sq. units) of the triangle $PQR$ is