Gujarati
Hindi
10-1.Circle and System of Circles
normal

The line $2x - y + 1 = 0$ is tangent to the circle at the point $(2, 5)$ and the centre of the circles lies on $x-2y=4$. The radius of the circle is 

A

$3 \sqrt{5}$

B

$5 \sqrt{3}$

C

$2 \sqrt{5}$

D

$5 \sqrt{2}$

Solution

$2x – y + 1 = 0$ is tangent

slope of line $OA = – \frac{1}{2}$

equation $(y – 5) = – \frac{1}{2}\,(x – 2)$

$2y – 10 = – x + 2$

$x + 2y = 12$

$\therefore$ intersection with $x – 2y = y$ will give coordinates of centre

$x + 2y = 12$

$- x – 2y = 4$

                        +

________________

$4y = 8\Rightarrow y = 2$

$x – 4 = 4\Rightarrow x = 8$

$C = (8, 2)$

distance $OA =\sqrt {{{(8 – 2)}^2} + {{(2 – 5)}^2}}  = \sqrt {36 + 9} = \sqrt{45} =3 \sqrt{5}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.