Gujarati
10-1.Circle and System of Circles
medium

The line $(x - a)\cos \alpha + (y - b)$ $\sin \alpha = r$ will be a tangent to the circle ${(x - a)^2} + {(y - b)^2} = {r^2}$

A

If $\alpha = {30^o}$

B

If $\alpha = {60^o}$

C

For all values of $\alpha $

D

None of these

Solution

(c) According to the condition of tangency

$r = \frac{{a\cos \alpha + b\sin \alpha – (a\cos \alpha + b\sin \alpha ) – r}}{{\sqrt {{{\cos }^2}\alpha + {{\sin }^2}\alpha } }}$

$ \Rightarrow r = | – r|\; \Rightarrow r = r$.

Therefore, it is a tangent to the circle for all values of $\alpha$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.