The point of contact of the tangent to the circle ${x^2} + {y^2} = 5$ at the point $(1, -2)$ which touches the circle ${x^2} + {y^2} - 8x + 6y + 20 = 0$, is
$(2, -1)$
$(3, -1)$
$(4, -1)$
$(5, -1)$
The centres of two circles $C_1$ and $C_2$ each of unit radius are at a distance of $6$ units from each other. Let $P$ be the mid point of the line segment joining the centres of $C_1$ and $C_2$ and $C$ be a circle touching circles $C_1$ and $C_2$ externally. If a common tangent to $C_1$ and $C$ passing through $P$ is also a common tangent to $C_2$ and $C$, then the radius of the circle $C$ is
Tangents drawn from the point $P(1,8)$ to the circle $x^2+y^2-6 x-4 y-11=0$ touch the circle at the points $A$ and $B$. The equation of the circumcircle of the triangle $P A B$ is
The value of $c$, for which the line $y = 2x + c$ is a tangent to the circle ${x^2} + {y^2} = 16$, is
The equations of the tangents drawn from the origin to the circle ${x^2} + {y^2} - 2rx - 2hy + {h^2} = 0$ are
Number of integral points interior to the circle $x^2 + y^2 = 10$ from which exactly one real tangent can be drawn to the curve $\sqrt {{{\left( {x + 5\sqrt 2 } \right)}^2} + {y^2}} \, - \sqrt {{{\left( {x - 5\sqrt 2 } \right)}^2} + {y^2}\,} \, = 10$ are (where integral point $(x, y)$ means $x, y \in I)$