The locus of a point $P\left( {\alpha ,\beta } \right)$ moving under the condition that the line $y = \alpha x + \beta $ is a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ is

  • A

    a hyperbola

  • B

    a parabola

  • C

    a circle

  • D

    an ellipse

Similar Questions

Let tangents drawn from point $C(0,-b)$ to hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ touches hyperbola at points $A$ and $B.$ If $\Delta ABC$ is a right angled triangle, then $\frac{a^2}{b^2}$ is equal to -

Tangents are drawn to the hyperbola $4{x^2} - {y^2} = 36$ at the points $P$ and $Q.$ If these tangents intersect at the point $T(0,3)$ then the area (in sq. units) of $\Delta PTQ$ is :

  • [JEE MAIN 2018]

If the latus rectum of an hyperbola be 8 and eccentricity be $3/\sqrt 5 $, then the equation of the hyperbola is

What will be equation of that chord of hyperbola $25{x^2} - 16{y^2} = 400$, whose mid point is $(5, 3)$

Let $\mathrm{P}$ be a point on the hyperbola $\mathrm{H}: \frac{\mathrm{x}^2}{9}-\frac{\mathrm{y}^2}{4}=1$, in the first quadrant such that the area of triangle formed by $\mathrm{P}$ and the two foci of $\mathrm{H}$ is $2 \sqrt{13}$. Then, the square of the distance of $\mathrm{P}$ from the origin is

  • [JEE MAIN 2024]