अतिपरवलय, $16 x ^{2}-9 y ^{2}+32 x +36 y -164=0$ पर किसी बिंदु $P$ तथा इसकी नाभियों से बने त्रिभुज के केन्द्रक का बिन्दुपथ है

  • [JEE MAIN 2021]
  • A

    $9 x^{2}-16 y^{2}+36 x+32 y-36=0$

  • B

    $16 x^{2}-9 y^{2}+32 x+36 y-36=0$

  • C

    $16 x^{2}-9 y^{2}+32 x+36 y-144=0$

  • D

    $9 x^{2}-16 y^{2}+36 x+32 y-144=0$

Similar Questions

एक अतिपरवलय बिन्दुओं $(3, 2)$ तथा $(-17, 12)$ से गुजरता है और उसका केन्द्र मूलबिन्दु पर है तथा अनुप्रस्थ अक्ष $x$ - अक्ष है। अतिपरवलय की अनुप्रस्थ अक्ष की लम्बाई है

वक्र ${b^2}{x^2} - {a^2}{y^2} = {a^2}{b^2}$ के बिन्दु $(a\sec \theta ,\;b\tan \theta )$ पर अभिलम्ब का समीकरण है

अतिपरवलय ${x^2} - 3{y^2} = 2x + 8$ के संयुग्मी अतिपरवलय की उत्केन्द्रता होगी

माना रेखा $L : y = mx + c , m > 0$ के अनुदिश परवलय $P : y ^2=4 x$ की नाभिलंब जीवा परवलय को बिन्दुओं $M$ तथा $N$ पर मिलती हैं माना रेखा $L$ अतिपरवलय $H : x ^2- y ^2=4$ की एक स्पर्श रेखा है। यदि $P$ का शीर्ष $O$ है तथा $H$ की धनात्मक $x$-अक्ष पर नाभि $F$ है, तो $OMFN$ का क्षेत्रफल है:

  • [JEE MAIN 2022]

अतिपरवलय की उत्केन्द्रता कभी भी निम्न के बराबर नहीं हो सकती