The locus of the foot of perpendicular drawn from the centre of the ellipse ${x^2} + 3{y^2} = 6$ on any tangent to it is
${\left( {{x^2} + {y^2}} \right)^2} = 6{x^2} + 2{y^2}$
$\;{\left( {{x^2} + {y^2}} \right)^2} = 6{x^2} - 2{y^2}$
$\;{\left( {{x^2} - {y^2}} \right)^2} = 6{x^2} + 2{y^2}$
$\;{\left( {{x^2} - {y^2}} \right)^2} = 6{x^2} - 2{y^2}$
If the normal at an end of a latus rectum of an ellipse passes through an extremity of the minor axis, then the eccentricity $e$ of the ellipse satisfies
The ellipse ${x^2} + 4{y^2} = 4$ is inscribed in a rectangle aligned with the coordinate axes, which in trun is inscribed in another ellipse that passes through the point $(4,0) $ . Then the equation of the ellipse is :
The number of values of $c$ such that line $y = cx + c$, $c \in R$ touches the curve $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1$ is
Find the equation of the ellipse whose vertices are $(±13,\,0)$ and foci are $(±5,\,0)$.