The locus of the foot of perpendicular drawn from the centre of the ellipse ${x^2} + 3{y^2} = 6$ on any tangent to it is

  • [JEE MAIN 2014]
  • A

    ${\left( {{x^2} + {y^2}} \right)^2} = 6{x^2} + 2{y^2}$

  • B

    $\;{\left( {{x^2} + {y^2}} \right)^2} = 6{x^2} - 2{y^2}$

  • C

    $\;{\left( {{x^2} - {y^2}} \right)^2} = 6{x^2} + 2{y^2}$

  • D

    $\;{\left( {{x^2} - {y^2}} \right)^2} = 6{x^2} - 2{y^2}$

Similar Questions

Let $P\left(x_1, y_1\right)$ and $Q\left(x_2, y_2\right), y_1<0, y_2<0$, be the end points of the latus rectum of the ellipse $x^2+4 y^2=4$. The equations of parabolas with latus rectum $P Q$ are

$(A)$ $x^2+2 \sqrt{3} y=3+\sqrt{3}$

$(B)$ $x^2-2 \sqrt{3} y=3+\sqrt{3}$

$(C)$ $x^2+2 \sqrt{3} y=3-\sqrt{3}$

$(D)$ $x^2-2 \sqrt{3} y=3-\sqrt{3}$

  • [IIT 2008]

Let $P(2,2)$ be a point on an ellipse whose foci are $(5,2)$ and $(2,6)$, then eccentricity of ellipse is 

If the length of the latus rectum of an ellipse is $4\,units$ and the distance between a focus and its nearest vertex on the major axis is $\frac {3}{2}\,units$ , then its eccentricity is?

  • [JEE MAIN 2018]

If tangents are drawn to the ellipse $x^2 + 2y^2 = 2$ at all points on the ellipse other than its four vertices than the mid points of the tangents intercepted between the coordinate axes lie on the curve

  • [JEE MAIN 2019]

Let the length of the latus rectum of an ellipse with its major axis long $x -$ axis and center at the origin, be $8$. If the distance between the foci of this ellipse is equal to the length of the length of its minor axis, then which one of the following points lies on it?

  • [JEE MAIN 2019]