10-1.Circle and System of Circles
hard

The locus of the mid points of the chords of the circle $C_1:(x-4)^2+(y-5)^2=4$ which subtend an angle $\theta_i$ at the centre of the circle $C_1$, is a circle of radius $r_i$. If $\theta_1=\frac{\pi}{3}, \theta_3=\frac{2 \pi}{3}$ and $r_1^2=r_2^2+r_3^2$, then $\theta_2$ is equal to

A

$\frac{\pi}{4}$

B

$\frac{3 \pi}{4}$

C

$\frac{\pi}{6}$

D

$\frac{\pi}{2}$

(JEE MAIN-2023)

Solution

In $\triangle C P B$

$\cos \frac{\theta}{2}=\frac{P C}{2} \Rightarrow P C=2 \cos \frac{\theta}{2}$

$\Rightarrow(h-4)^2+(k-5)^2=4 \cos ^2 \frac{\theta}{2}$

$\text { Now }(x-4)^2+(y-5)^2=\left(2 \cos \frac{\theta}{2}\right)^2$

$\Rightarrow I_1=2 \cos \frac{\pi}{6}=\sqrt{3}$

$I_2=2 \cos \frac{\theta_2}{2}$

$\Rightarrow I _3=2 \cos _1^2= r _2^2+ I _3^2$

$\Rightarrow 3=4 \cos ^2 \frac{\theta_2}{2}+1$

$\Rightarrow 4 \cos ^2 \frac{\theta_2}{2}=2$

$\Rightarrow \cos ^2 \frac{\theta_2}{2}=\frac{1}{2}$

$\theta_2=\frac{\pi}{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.