If circles ${x^2} + {y^2} + 2ax + c = 0$and ${x^2} + {y^2} + 2by + c = 0$ touch each other, then 

  • A

    $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$

  • B

    $\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} = \frac{1}{{{c^2}}}$

  • C

    $\frac{1}{a} + \frac{1}{b} = {c^2}$

  • D

    $\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} = \frac{1}{c}$

Similar Questions

Circles ${(x + a)^2} + {(y + b)^2} = {a^2}$ and ${(x + \alpha )^2}$ $ + {(y + \beta )^2} = $ ${\beta ^2}$ cut orthogonally, if

The circle passing through the intersection of the circles, $x^{2}+y^{2}-6 x=0$ and $x^{2}+y^{2}-4 y=0$ having its centre on the line, $2 x-3 y+12=0$, also passes through the point

  • [JEE MAIN 2020]

The lengths of tangents from a fixed point to three circles of coaxial system are ${t_1},{t_2},{t_3}$ and if $P, Q$ and $R$ be the centres, then $QRt_1^2 + RPt_2^2 + PQt_3^2$ is equal to

Consider a family of circles which are passing through the point $(- 1, 1)$ and are tangent to $x-$ axis. If $(h, k)$ are the coordinate of the centre of the circles, then the set of values of $k$ is given by the interval

  • [AIEEE 2007]

The distance from the centre of the circle $x^2 + y^2 = 2x$ to the straight line passing  through the points of intersection of the two circles $x^2 + y^2 + 5x -8y + 1 =0$ and $x^2 + y^2-3x + 7y -25 = 0$ is-