Gujarati
10-1.Circle and System of Circles
medium

If circles ${x^2} + {y^2} + 2ax + c = 0$and ${x^2} + {y^2} + 2by + c = 0$ touch each other, then 

A

$\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$

B

$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} = \frac{1}{{{c^2}}}$

C

$\frac{1}{a} + \frac{1}{b} = {c^2}$

D

$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} = \frac{1}{c}$

Solution

(d) ${C_1}( – a,\;0);$${C_2}(0,\; – b);$

${R_1}(\sqrt {{a^2} – c} );$ ${R_2}(\sqrt {{b^2} – c} )$

${C_1}{C_2} = \sqrt {{a^2} + {b^2}} $

Since they touch each other, tiply by $\frac{1}{{{a^2}{b^2}c}},\;$

we get $\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} = \frac{1}{c}$.

therefore $\sqrt {{a^2} – c} + \sqrt {{b^2} – c} = \sqrt {{a^2} + {b^2}} $

$ \Rightarrow {a^2}{b^2} – {b^2}c – {a^2}c$= 0

Multiply by $\frac{1}{{{a^2}{b^2}c}},\;$

we get  $\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} = \frac{1}{c}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.