Gujarati
10-2. Parabola, Ellipse, Hyperbola
medium

The value of $\lambda $, for which the line $2x - \frac{8}{3}\lambda y = - 3$ is a normal to the conic ${x^2} + \frac{{{y^2}}}{4} = 1$ is

A

$\frac{{\sqrt 3 }}{2}$

B

$\frac{1}{2}$

C

$ - \frac{{\sqrt 3 }}{2}$

D

$\frac{3}{8}$

Solution

(d) We know that the equation of the normal at point $(a\cos \theta ,\,b\sin \theta )$ on the curve ${x^2} + \frac{{{y^2}}}{4} = 1$ is given by

$ax\sin \theta – by{\rm{cosec }}\theta = {a^2} – {b^2}$…..$(i)$

Comparing equation $(i)$ with $2x – \frac{8}{3}\lambda y = – 3$. We get,

$a\sin \theta = 2$, $b{\rm{ cosec}}\theta = \frac{8}{3}\lambda $ or $ab = \frac{{16}}{3}\lambda $…..$(ii)$

$\because \,a = 1,\,b = 2$; $2 = \frac{{16}}{3}\lambda $ or $\lambda = 3/8$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.