4-1.Newton's Laws of Motion
medium

The magnitude of force acting on a particle moving along $x$-axis varies with time $(t)$ as shown in figure. If at $t=0$ the velocity of particle is $v_0$, then its velocity at $t=T_0$ will be

A

$v_0+\frac{\pi F_0 T_0}{4 m}$

B

$v_0+\frac{\pi F_0}{2 m}$

C

$v_0+\frac{\pi T_0^2}{4 m}$

D

$v_0+\frac{\pi F_0 T_0}{m}$

Solution

(a)

$\int F d t=m \Delta v$

$\int F d t$ is area under $F-t$ curve

$m \Delta v \left.=\pi\left(\frac{F_0}{2}\right) \cdot\left(\frac{T_0}{2}\right) \text { [area }=\frac{\pi a b}{2}\right]$

$v-v_0 =\frac{\pi F_0 T_0}{4 m}$

$v=v_0+\frac{\pi F_0 T_0}{4 m}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.