- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
The matrix $A = \left[ {\begin{array}{*{20}{c}}{1/\sqrt 2 }&{1/\sqrt 2 }\\{ - 1/\sqrt 2 }&{ - 1/\sqrt 2 }\end{array}} \right]$ is
A
Unitary
B
Orthogonal
C
Nilpotent
D
Involutory
Solution
(c) ${A^2} = A\,.\,A = \left[ {\begin{array}{*{20}{c}}{1/\sqrt 2 }&{1/\sqrt 2 }\\{ – 1/\sqrt 2 }&{ – 1/\sqrt 2 }\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}{1/\sqrt 2 }&{1/\sqrt 2 }\\{ – 1/\sqrt 2 }&{ – 1/\sqrt 2 }\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}}0&0\\0&0\end{array}} \right] = O$
$\therefore $ Matrix $A$ is nilpotent of order $2$ .
Standard 12
Mathematics
Similar Questions
normal