5.Work, Energy, Power and Collision
hard

$2.5 \,m$ त्रिज्या के वृत्त में नियत वेग से घुमाये जा रहे धागे के अधिकतम व न्यूनतम तनावों का अनुपात  $5 : 3$ है, तब इसका वेग है

A

$\sqrt {98} \,\,m/s$

B

$7\,\,m/s$

C

$\sqrt {490} \,\,m/s$

D

$\sqrt {4.9} $

Solution

इस प्रश्न में यह माना गया है, कि कण यद्यपि ऊध्र्वाधर वृत्त में घूम रहा है परन्तु इसकी चाल नियत रहती है।

निम्नतम बिन्दु पर तनाव ${T_{max}} = \frac{{m{v^2}}}{r} + mg$

उच्चतम बिन्दु पर तनाव ${T_{max}} = \frac{{m{v^2}}}{r} – mg$

$\frac{{{T_{max}}}}{{{T_{max}}}} = \frac{{\frac{{m{v^2}}}{r} + mg}}{{\frac{{m{v^2}}}{r} – mg}} = \frac{5}{3}$

इसे हल करने पर हमें प्राप्त होता है

$v = \sqrt {4gr} $$ = \sqrt {4 \times 9.8 \times 2.5} $$ = \sqrt {98} \,m/s$

 

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.