The maximum number of compound propositions, out of $p \vee r \vee s , p \vee P \vee \sim s , p \vee \sim q \vee s$,
$\sim p \vee \sim r \vee s , \sim p \vee \sim r \vee \sim s , \sim p \vee q \vee \sim s$, $q \vee r \vee \sim s , q \vee \sim r \vee \sim s , \sim p \vee \sim q \vee \sim s$
that can be made simultaneously true by an assignment of the truth values to $p , q , r$ and $s$, is equal to
$9$
$6$
$4$
$3$
If the Boolean expression $\left( {p \oplus q} \right) \wedge \left( { \sim p\,\Theta\, q} \right)$ is equivalent to $p \wedge q$, where $ \oplus $ , $\Theta \in \left\{ { \wedge , \vee } \right\}$ , ,then the ordered pair $\left( { \oplus ,\Theta } \right)$ is
Which of the following statements is $NOT$ logically equivalent to $\left( {p \to \sim p} \right) \to \left( {p \to q} \right)$?
Which of the following Boolean expressions is not a tautology ?
Which Venn diagram represent the truth of the statement“Some teenagers are not dreamers”
The negation of the expression $q \vee((\sim q) \wedge p)$ is equivalent to