The maximum value $M$ of $3^x+5^x-9^x+15^x-25^x$, as $x$ varies over reals, satisfies
$3 < M < 5$
$0 < M < 2$
$9 < M < 25$
$5 < M < 9$
If $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5$,then $x$ is equal to
All the points $(x, y)$ in the plane satisfying the equation $x^2+2 x \sin (x y)+1=0$ lie on
Let $[t]$ denote the greatest integer $\leq t .$ Then the equation in $x ,[ x ]^{2}+2[ x +2]-7=0$ has
If $\alpha ,\beta ,\gamma$ are the roots of $x^3 - x - 2 = 0$, then the value of $\alpha^5 + \beta^5 + \gamma^5$ is-