Let $S=\left\{\sin ^2 2 \theta:\left(\sin ^4 \theta+\cos ^4 \theta\right) x^2+(\sin 2 \theta) x+\right.$ $\left(\sin ^6 \theta+\cos ^6 \theta\right)=0$ has real roots $\}$. If $\alpha$ and $\beta$ be the smallest and largest elements of the set $S$, respectively, then $3\left((\alpha-2)^2+(\beta-1)^2\right)$ equals....................

  • [JEE MAIN 2024]
  • A

    $4$

  • B

    $2$

  • C

    $7$

  • D

    $9$

Similar Questions

The set of all $a \in R$ for which the equation $x | x -1|+| x +2|+a=0$ has exactly one real root is:

  • [JEE MAIN 2023]

If $\log _{(3 x-1)}(x-2)=\log _{\left(9 x^2-6 x+1\right)}\left(2 x^2-10 x-2\right)$, then $x$ equals

  • [KVPY 2015]

$\{ x \in R:|x - 2|\,\, = {x^2}\} = $

Sum of the solutions of the equation $\left[ {{x^2}} \right] - 2x + 1 = 0$ is (where $[.]$ denotes greatest integer function)

The real roots of the equation ${x^2} + 5|x| + \,\,4 = 0$ are