If $\alpha ,\beta,\gamma$ are the roots of equation $x^3 + 2x -5 = 0$ and if equation $x^3 + bx^2 + cx + d = 0$ has roots $2 \alpha + 1, 2 \beta + 1, 2 \gamma + 1$ , then value of $|b + c + d|$ is (where $b,c,d$ are coprime)-
$41$
$39$
$40$
$43$
Let $\alpha, \beta$ be two roots of the equation $x^{2}+(20)^{\frac{1}{4}} x+(5)^{\frac{1}{2}}=0$. Then $\alpha^{8}+\beta^{8}$ is equal to:
Exact set of values of $a$ for which ${x^3}(x + 1) = 2(x + a)(x + 2a)$ is having four real solutions is
The set of values of $x$ which satisfy $5x + 2 < 3x + 8$ and $\frac{{x + 2}}{{x - 1}} < 4,$ is
The number of cubic polynomials $P(x)$ satisfying $P(1)=2, P(2)=4, P(3)=6, P(4)=8$ is
The two roots of an equation ${x^3} - 9{x^2} + 14x + 24 = 0$ are in the ratio $3 : 2$. The roots will be