If $\alpha ,\beta,\gamma$ are the roots of equation $x^3 + 2x -5 = 0$ and if equation $x^3 + bx^2 + cx + d = 0$ has roots $2 \alpha + 1, 2 \beta + 1, 2 \gamma + 1$ , then value of $|b + c + d|$ is (where $b,c,d$ are coprime)-
$41$
$39$
$40$
$43$
Let $\alpha$ and $\beta$ be the roots of $x^2-x-1=0$, with $\alpha>\beta$. For all positive integers $n$, define
$a_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}, n \geq 1$
$b_1=1 \text { and } b_n=a_{n-1}+a_{n+1}, n \geq 2.$
Then which of the following options is/are correct?
$(1)$ $a_1+a_2+a_3+\ldots . .+a_n=a_{n+2}-1$ for all $n \geq 1$
$(2)$ $\sum_{n=1}^{\infty} \frac{ a _{ n }}{10^{ n }}=\frac{10}{89}$
$(3)$ $\sum_{n=1}^{\infty} \frac{b_n}{10^n}=\frac{8}{89}$
$(4)$ $b=\alpha^n+\beta^n$ for all $n>1$
If $S$ is a set of $P(x)$ is polynomial of degree $ \le 2$ such that $P(0) = 0,$$P(1) = 1$,$P'(x) > 0{\rm{ }}\forall x \in (0,\,1)$, then
The number of solutions of the equation $\log _{(x+1)}\left(2 x^{2}+7 x+5\right)+\log _{(2 x+5)}(x+1)^{2}-4=0, x\,>\,0$, is $....$
The number of distinct real roots of the equation $x^{5}\left(x^{3}-x^{2}-x+1\right)+x\left(3 x^{3}-4 x^{2}-2 x+4\right)-1=0$ is
The number of real solutions of the equation $\mathrm{x}|\mathrm{x}+5|+2|\mathrm{x}+7|-2=0$ is .....................