$40$ અવલોકનનું સરેરાશ વિચલન અને પ્રમાણિત વિચલન અનુક્રમે $30$ અને  $5$ છે. જો પછીથી માલૂમ પડ્યું કે બે અવલોકનો  $12$ અને $10$ ભૂલથી લેવાય ગયા છે . જો $\sigma$ એ અવલોકનો દૂર કર્યા પછીનું પ્રમાણિત વિચલન હોય તો  $38 \sigma^{2}$ ની કિમંત $.........$ થાય.

  • [JEE MAIN 2022]
  • A

    $238$

  • B

    $239$

  • C

    $240$

  • D

    $241$

Similar Questions

જો $v_1 =$ $\{13, 1 6, 1 9, . . . . . , 103\}$ નો વિચરણ અને $v_2 =$ $\{20, 26, 32, . . . . . , 200\}$ નો વિચરણ હોય તો $v_1 : v_2$ મેળવો. 

ધારો કે અવલોકનો  $\mathrm{x}_{\mathrm{i}}(1 \leq \mathrm{i} \leq 10)$ એ સમીકરણો  $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)=10$ અને  $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)^{2}=40$ નું સમાધાન કરે છે. જો  $\mu$ અને  $\lambda$ એ અનુક્રમે અવલોકનો $\mathrm{x}_{1}-3, \mathrm{x}_{2}-3, \ldots ., \mathrm{x}_{10}-3,$ નો મધ્યક અને વિચરણ હોય તો ક્રમયુક્ત જોડ $(\mu, \lambda)$ મેળવો.

  • [JEE MAIN 2020]

આઠ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $9$ અને $9.25$ છે, જો આમાંથી છ અવલોકનો $6, 7, 10, 12, 12$ અને $13$ હોય, તો બાકીનાં બે અવલોકનો શોધો. 

પાંચ અવલોકનોનો મધ્યક અને પ્રમાણિત વિચલન $(s.d.)$ અનુક્રમે $9$ અને $0$ છે જો તેમાંથી એક અવલોકનને બદલી નાખવામાં આવે કે જેથી તેમનો મધ્યક $10$ થાય તો તેમનું પ્રમાણિત વિચલન $(s.d.)$ = 

  • [JEE MAIN 2018]

$30$ વસ્તુઓને અવલોકવામાં આવે છે જેમાંથી $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} - d$, $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} $ અને બાકી રહેલ $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} + d$ છે જો આપેલ માહિતીનો  વિચરણ $\frac {4}{3}$  હોય તો $\left| d \right|$ = 

  • [JEE MAIN 2019]