$100$ प्रेक्षणों का माध्य और मानक विचलन क्रमश: $20$ और $3$ हैं। बाद में यह पाया गया कि तीन प्रेक्षण $21,21$ तथा $18$ गलत थे। यदि गलत प्रेक्षणों को हटा दिया जाए तो माध्य व मानक विचलन ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Number of observations $(n)=100$

Incorrect mean $(\bar{x})=20$

Incorrect standard deviation $(\sigma)=3$

$ \Rightarrow 20 = \frac{1}{{100}}\sum\limits_{i = 1}^{300} {{x_i}} $

$ \Rightarrow \sum\limits_{i = 1}^{100} {{x_i}}  = 20 \times 100 = 2000$

Incorrect sum of observations $=2000$

$\Rightarrow$ Correct sum of observations $=2000-21-21-18=2000-60=1940$

Similar Questions

$10$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमशः $20$ तथा $8$ हैं। बाद में यह पाया गया कि एक प्रेक्षण को $40$ के स्थान पर $50$ लिया गया था। तो सही प्रसरण है :

  • [JEE MAIN 2023]

पाँच प्रेक्षणों का माध्य तथा मानक विचलन क्रमशः $9$ तथा $0$ हैं। यदि उनमें से एक प्रेक्षण इस प्रकार बदला जाए कि नया माध्य $10$ हो जाए, तो उनका मानक विचलन है

  • [JEE MAIN 2018]

माना $A$ में 5 अवयव है तथा समुच्चय $B$ में भी 5 अवयव हैं। माना समुच्चयों $A$ तथा $B$ के अवयवों के माध्य क्रमशः $5$ तथा $8$ है और समुच्चयों $A$ तथा $\mathrm{B}$ के अवयवों $12$ तथा $20$ है। $\mathrm{A}$ के प्रत्येक अवयव में से $3$ घटा कर तथा $B$ के प्रत्येक अवयव में $2$ जोड़ कर $10$ अवयवों का एक नया समुच्चय $\mathrm{C}$ बनाया जाता है। तो $\mathrm{C}$ के अवयवों के माध्य तथा प्रसरण का योग है :

  • [JEE MAIN 2023]

किसी प्रयोग में $x$ पर $15$ प्रेक्षणों के निम्न परिणाम प्राप्त होते हैं, $\sum {x^2} = 2830$, $\sum x = 170$. प्रेक्षण करने पर एक मान $20$ गलत पाया गया तथा उसे सही मान $30$ से प्रतिस्थापित किया गया। तब सही प्रसरण है...

  • [AIEEE 2003]

यदि $0, 1, 2, 3, …..,9$ का मानक विचलन $K$ है, तब $10, 11, 12, 13,…..,19$ का मानक विचलन है