$100$ અવલોકનોના સમૂહનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $20$ અને $3 $ છે. પછીથી જાણ થાય છે કે ત્રણ અવલોકનો $21, 21$ અને $18$ ખોટાં હતાં. આ ખોટાં અવલોકનોને દૂર કરવામાં આવે તો મધ્યક અને પ્રમાણિત વિચલન શોધો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Number of observations $(n)=100$

Incorrect mean $(\bar{x})=20$

Incorrect standard deviation $(\sigma)=3$

$ \Rightarrow 20 = \frac{1}{{100}}\sum\limits_{i = 1}^{300} {{x_i}} $

$ \Rightarrow \sum\limits_{i = 1}^{100} {{x_i}}  = 20 \times 100 = 2000$

Incorrect sum of observations $=2000$

$\Rightarrow$ Correct sum of observations $=2000-21-21-18=2000-60=1940$

Similar Questions

$x_1, x_2 …… x_{101}$ વિતરણના $x_1 < x_2 < x_3 < …… < x_{100} < x_{101}$ મૂલ્યો માટે સંખ્યા $k$  ની સાપેક્ષે આ વિતરણનું સરેરાશ વિચલન ઓછામાં ઓછું હશે. જ્યારે $k$  બરાબર નીચેના પૈકી કયું હશે ?

અહી $\mathrm{X}$ એ વિતરણનું યાર્દચ્છિક ચલ છે.

$\mathrm{x}$ $-2$ $-1$ $3$ $4$ $6$
$\mathrm{P}(\mathrm{X}=\mathrm{x})$ $\frac{1}{5}$ $\mathrm{a}$ $\frac{1}{3}$ $\frac{1}{5}$ $\mathrm{~b}$

જો મધ્યક $X$ એ  $2.3$ અને $X$ નું વિચરણ $\sigma^{2}$ હોય તો $100 \sigma^{2}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જો તો  વિચરણ $\sigma^2$ =................................

$x_i$ $0$ $1$ $5$ $6$ $10$ $12$ $17$
$f_i$ $3$ $2$ $3$ $2$ $6$ $3$ $3$

 

  • [JEE MAIN 2024]

જો આપેલ આવૃતિ વિતરણનો મધ્યક અને વિચરણ અનુક્રમે $9$ અને$15.08$ છે તો $\alpha^2+\beta^2-\alpha \beta$ ની કિમંત મેળવો.

$x_i$ $2$ $4$ $6$ $8$ $10$ $12$ $14$ $16$
$f_i$ $4$ $4$ $\alpha$ $15$ $8$ $\beta$ $4$ $5$

  • [JEE MAIN 2023]

જો આઠ સંખ્યાઓ  $3,7,9,12,13,20, x$ અને $y$ નું  મધ્યક અને વિચરણ  અનુક્રમે  $10$ અને $25$ હોય તો  $\mathrm{x} \cdot \mathrm{y}$ મેળવો.

  • [JEE MAIN 2020]