એક ધોરણના $50$ વિદ્યાર્થીઓ દ્વારા ત્રણ વિષયો ગણિત, ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્રમાં મેળવેલા ગુણનો મધ્યક અને પ્રમાણિત વિચલન નીચે પ્રમાણે છે :
વિષય |
ગણિત | ભૌતિકશાસ્ત્ર |
રસાયણશાસ્ત્ર |
મધ્યક | $42$ | $32$ | $40.9$ |
પ્રમાણિત વિચલન | $12$ | $15$ | $20$ |
કયા વિષયમાં સૌથી વધુ ચલન અને કયા વિષયમાં સૌથી ઓછું ચલન છે ?
Standard deviation of Mathematics $=12$
Standard deviation of Physics $=15$
Standard deviation of Chemistry $=20$
The coefficient of variation $( C.V. )$ is given by $\frac{\text { Standard deviation }}{\text { Mean }} \times 100$
$C.V.$ (in Mathematics) $=\frac{12}{42} \times 100=28.57$
$C.V.$ (in Physics) $=\frac{15}{32} \times 100=46.87$
$C.V.$ (in Chemistry) $=\frac{20}{40.9} \times 100=48.89$
The subject with greater $C.V.$ is more variable than others.
Therefore, the highest variability in marks is in Chemistry and the lowest variability in marks is in Mathematics.
જો માહિતી : $7, 8, 9, 7, 8, 7, \mathop \lambda \limits^. , 8$ નો મધ્યક $8$ હોય તો માહિતીનો વિચરણ મેળવો
આપેલ આવૃતિ વિતરણ :
ચલ $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
આવૃતિ $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
જ્યાં $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ અને $\sum \limits_{i=1}^{15} f_{i}>0,$ હોય તો પ્રમાણિત વિચલન ............ ના હોય શકે
નીચે આપેલ માહિતી માટે વિચરણ અને પ્રમાણિત વિચલન શોધો :
${x_i}$ | $4$ | $8$ | $11$ | $17$ | $20$ | $24$ | $32$ |
${f_i}$ | $3$ | $5$ | $9$ | $5$ | $4$ | $3$ | $1$ |
જો આપેલ આવૃતિ વિતરણનો મધ્યક અને વિચરણ અનુક્રમે $9$ અને$15.08$ છે તો $\alpha^2+\beta^2-\alpha \beta$ ની કિમંત મેળવો.
$x_i$ | $2$ | $4$ | $6$ | $8$ | $10$ | $12$ | $14$ | $16$ |
$f_i$ | $4$ | $4$ | $\alpha$ | $15$ | $8$ | $\beta$ | $4$ | $5$ |
બિંદુ $c$ આગળ $x_1, x_2 ……, x_n$ અવલોકનોના ગણનો મધ્યક વર્ગ વિચલન $\frac{1}{n}\,\,\sum\limits_{i\, = \,1}^n {{{({x_i}\, - \,\,c)}^2}} $વડે દર્શાવાય છે. $-2$ અને $2 $ નાં મધ્યક વર્ગ વિચલન અનુક્રમે $18$ અને $10$ હોય, તો આ ગણના અવલોકનોનું પ્રમાણિત વિચલન શોધો.