એક $60$ બલ્બના નમૂનાનો ચાલવાનો મધ્યક $650$ કલાકો અને પ્રમાણિત વિચલન $8$ કલાકો છે બીજા $80$ બલ્બના નમૂનાનો ચાલવાનો મધ્યક $660$ કલાકો અને પ્રમાણિત વિચલન $7$ કલાકો છે તો બધાનું પ્રમાણિત વિચલન કેટલું થાય ? 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here, $n_{1}=60, \bar{x}_{1}=650, s_{1}=8$ and $n_{2}=80, \bar{x}_{2}=660, s_{2}=7$

$\therefore \quad \sigma=\sqrt{\frac{n_{1} s_{1}^{2}+n_{2} s_{2}^{2}}{n_{1}+n_{2}}+\frac{n_{1} n_{2}\left(\bar{x}_{1}-\bar{x}_{2}\right)^{2}}{\left(n_{1}+n_{2}\right)^{2}}}$

$=\sqrt{\frac{60 \times(8)^{2}+80 \times(7)^{2}}{60+80}+\frac{60 \times 80(650-660)^{2}}{(60+80)^{2}}}$

$=\sqrt{\frac{6 \times 64+8 \times 49}{14}+\frac{60 \times 80 \times 100}{140 \times 140}}$

$=\sqrt{\frac{192+196}{7}+\frac{1200}{49}=\sqrt{\frac{388}{7}+\frac{1200}{49}}}{\sqrt{\frac{2716+1200}{49}}}$

$=\sqrt{\frac{3915}{49}}=\sqrt{79.9}=8.9$

Similar Questions

વિધાન $- 1 : $ પ્રથમ $n$  યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ $\frac{{{n^2}\, - \,\,1}}{4}$છે.

વિધાન $ - 2$  : પ્રથમ પ્રાકૃતિક સંખ્યાઓનો સરવાળો $\frac{{n(n\,\, + \,\,1)}}{2}$અને પ્રથમ $n$  પ્રાકૃતિક સંખ્યાઓના વર્ગનો સરવાળો $\frac{{n(n\, + \,\,1)\,(2n\, + \,\,1)}}{6}$ છે.

જો $x_i $ નું પ્રમાણિત વિચલન $10$  હોય તો ($50 + 5x_i$)નું વિચરણ કેટલું હશે ?

$x $ ના $15$ અવલોકનોના પ્રયોગમાં $\Sigma$ $x^2 = 2830,$  $\Sigma$ $x = 170 $ આ પરિણામ મળે છે. એક અવલોકન $20$  ખોટું મળે છે અને તેના સ્થાને સાચું અવલોકન $30$  મૂકવામાં આવે તો સાચું વિરણ કેટલું થાય ?

જો બે $200$ અને $300$ અવલોકનો ધરાવતા સમૂહોનો મધ્યક અનુક્રમે $25, 10$ અને તેમનો $S.D.$ અનુક્રમે $3$ અને $4$ હોય તો બંને સમૂહોને ભેગા કરતાં $500$ અવલોકનો ધરાવતા નવા સમૂહનો વિચરણ મેળવો. 

અવલોકનો $3,5,7,2\,k , 12,16,21,24$ ને ચડતા ક્રમમાં ગોઠવી ને મધ્યસ્થની સરેરાશ વિચલન $6$  હોય તો મધ્યસ્થ મેળવો.

  • [JEE MAIN 2022]