બે માહિતીમાં $ 5 $ અવલોકનો આવેલ છે કે જેના વિચરણ $4$ અને $5$ છે અને તેમાંના મધ્યકો અનુક્રમે $2$ અને $4$ છે. તો બંને માહિતીને ભેગી કરતાં નવી માહિતીનો વિચરણ મેળવો. .
$\frac{{11}}{2}$
$6$
$\frac{{13}}{2}$
$\frac{5}{2}$
ધારો કે $5$ અવલોકનો $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ નાં મધ્યક અને વિચરણ અનુક્રમે $\frac{24}{5}$ અને $\frac{194}{25}$ છે.જો પ્રથમ $4$ અવલોકનોમાં મધ્યક અને વિચરણ અનુક્રમે $\frac{7}{2}$ અને $a$ હોય,તો $\left(4 a+x_{5}\right)=\dots\dots$
જો આપેલ આવૃતિ વિતરણનો મધ્યક અને વિચરણ અનુક્રમે $9$ અને$15.08$ છે તો $\alpha^2+\beta^2-\alpha \beta$ ની કિમંત મેળવો.
$x_i$ | $2$ | $4$ | $6$ | $8$ | $10$ | $12$ | $14$ | $16$ |
$f_i$ | $4$ | $4$ | $\alpha$ | $15$ | $8$ | $\beta$ | $4$ | $5$ |
ધારો કે $n $ અવલોકનો $x_1, x_2, ….., x_n$ એવો છે કે જેથી $\sum {x_i}^2 = 400 $ અને $\sum x_i = 80$ થાય તો નીચેના પૈકી $n$ કેટલી શક્ય કિંમતો મળે ?
આપેલ માહિતી નો વિચરણ $160$ હોય તો $A$ ની કિમત મેળવો જ્યાં $A$ એ ધન પૂર્ણાક છે
$\begin{array}{|l|l|l|l|l|l|l|} \hline X & A & 2 A & 3 A & 4 A & 5 A & 6 A \\ \hline f & 2 & 1 & 1 & 1 & 1 & 1 \\ \hline \end{array}$
$2, 4, 6, 8, 10$ નું વિચરણ શોધો.