$6$ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $8$ અને $4$ છે. જો પ્રત્યેક અવલોકનને $3$ વડે ગુણવામાં આવે, તો પરિણામી અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન શોધો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the observations be $x_{1}, x_{2}, x_{3}, x _{4}, x_{5} ,$ and $x_{6}$

It is given that mean is $8$ and standard deviation is $4$

Mean, $\bar{x}=\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}}{6}=8$       .......$(1)$

If each observation is multiplied by $3$ and the resulting observations are $y_{i},$ then

$y_{1}=3 x_{1}$ i.e., $x_{1}=\frac{1}{3} y_{1},$ for $i=1$ to $6$

New Mean, $\bar{y}=\frac{y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}}{6}$

$=\frac{3\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)}{6}$

$=3 \times 8$        .......[ Using  $(1)$ ]

$=28$

Standard deviation, $\sigma  = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^6 {{{\left( {{x_1} - \bar x} \right)}^2}} } $

$\therefore {\left( 4 \right)^2} = \frac{1}{6}\sum\limits_{i = 1}^6 {{{\left( {{x_i} - \bar x} \right)}^2}} $

$\sum\limits_{i = 1}^6 {{{\left( {{x_i} - \bar x} \right)}^2}}  = 96$            ........$(2)$

From $(1)$ and $(2),$ it can be observed that,

$\bar{y}=3 \bar{x}$

$\bar{x}=\frac{1}{3} \bar{y}$

Substituting the values of $x_{1}$ and $\bar{x}$ in $(2),$ we obtain

$\sum\limits_{i = 1}^6 {{{\left( {\frac{1}{3}{y_1} - \frac{1}{3}\bar y} \right)}^2} = 96} $

$ \Rightarrow \sum\limits_{i = 1}^6 {{{\left( {{y_1} - \bar y} \right)}^2} = 864} $

Therefore, variance of new observations $=\left(\frac{1}{6} \times 864\right)=144$

Hence, the standard deviation of new observations is $\sqrt{144}=12$

Similar Questions

$7$ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $8$ અને $16$ છે.જો એેક અવલોકન $14$ ને રદ કરવામાં આવે અને બાકીના $6$ અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $a$ અને b હોય.તો $a+3b-5=............$.

  • [JEE MAIN 2023]

જ્યારે $10$ અવલોકન લખવામાં આવે ત્યારે એક વિધ્યાર્થી $25$ ની બદલે $52$ લખી નાખે છે  અને તેને મધ્યક અને વિચરણ અનુક્રમે $45$ અને $16$ મળે છે તો સાચો મધ્યક અને વિચરણ મેળવો 

$20$ અવલોકનોનું વિચરણ $5$ છે. જો પ્રત્યેક અવલોકનને $2$ વડે ગુણવામાં આવે, તો પ્રાપ્ત થયેલ અવલોકનો માટે નવું વિચરણ શોધો.

નીચે આપેલ માહિતી પરથી બતાવો કે $A$ અને $B$ માંથી કયા સમૂહમાં વધારે ચલન છે?

ગુણ

$10-20$ $20-30$ $30-40$ $40-50$ $50-60$ $60-70$ $70-80$
સમૂહ  $A$ $9$ $17$ $32$ $33$ $40$ $10$ $9$
સમૂહ $B$ $10$ $20$ $30$ $25$ $43$ $15$ $7$

ધારો કે $X=\{11,12,13, \ldots, 40,41\}$ અને $Y=\{61,62,63, \ldots, 90,91\}$ એ અવલોકનોના બે ગણ છે. જો $\bar{x}$ અને $\bar{y}$ અનુક્રમે તેમના મધ્યક હોય તથા $X \cup Y$ માં ના તમામ અવલોકનો નું વિચરણ $\sigma^2$ હોય, તો $\left|\bar{x}+\bar{y}-\sigma^2\right|=...............$

  • [JEE MAIN 2023]