छ: प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $8$ तथा $4$ हैं। यदि प्रत्येक प्रेक्षण को तीन से गुणा कर दिया जाए तो परिणामी प्रेक्षणों का माध्य व मानक विचलन ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the observations be $x_{1}, x_{2}, x_{3}, x _{4}, x_{5} ,$ and $x_{6}$

It is given that mean is $8$ and standard deviation is $4$

Mean, $\bar{x}=\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}}{6}=8$       .......$(1)$

If each observation is multiplied by $3$ and the resulting observations are $y_{i},$ then

$y_{1}=3 x_{1}$ i.e., $x_{1}=\frac{1}{3} y_{1},$ for $i=1$ to $6$

New Mean, $\bar{y}=\frac{y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}}{6}$

$=\frac{3\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)}{6}$

$=3 \times 8$        .......[ Using  $(1)$ ]

$=28$

Standard deviation, $\sigma  = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^6 {{{\left( {{x_1} - \bar x} \right)}^2}} } $

$\therefore {\left( 4 \right)^2} = \frac{1}{6}\sum\limits_{i = 1}^6 {{{\left( {{x_i} - \bar x} \right)}^2}} $

$\sum\limits_{i = 1}^6 {{{\left( {{x_i} - \bar x} \right)}^2}}  = 96$            ........$(2)$

From $(1)$ and $(2),$ it can be observed that,

$\bar{y}=3 \bar{x}$

$\bar{x}=\frac{1}{3} \bar{y}$

Substituting the values of $x_{1}$ and $\bar{x}$ in $(2),$ we obtain

$\sum\limits_{i = 1}^6 {{{\left( {\frac{1}{3}{y_1} - \frac{1}{3}\bar y} \right)}^2} = 96} $

$ \Rightarrow \sum\limits_{i = 1}^6 {{{\left( {{y_1} - \bar y} \right)}^2} = 864} $

Therefore, variance of new observations $=\left(\frac{1}{6} \times 864\right)=144$

Hence, the standard deviation of new observations is $\sqrt{144}=12$

Similar Questions

यदि बारंबारता बंटन

$x_i$ $2$ $4$ $6$ $8$ $10$ $12$ $14$ $16$
$f_i$ $4$ $4$ $\alpha$ $15$ $8$ $\beta$ $4$ $5$

के माध्य तथा प्रसरण क्रमशः $9$ तथा $15.08$ हैं, तो $\alpha^2+\beta^2-\alpha \beta$ का मान है________________

  • [JEE MAIN 2023]

माना प्रेक्षणों के दो समुच्चय $\mathrm{X}=\{11,12,13, \ldots \ldots$, $40,41\}$ तथा $\mathrm{Y}=\{61,62,63, \ldots ., 90,91\}$ है। यदि इनके माध्य क्रमशः $\bar{x}$ तथा $\bar{y}$ हैं तथा $\mathrm{X} \cup \mathrm{Y}$ में सभी प्रेक्षणों का प्रसरण $\sigma^2$ है तो $\left|\overline{\mathrm{x}}+\overline{\mathrm{y}}-\sigma^2\right|$ बराबर है_____________. 

  • [JEE MAIN 2023]

$15$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमशः $12$ तथा 3 प्राप्त किए गए। पुनः जाँच पर यह पाया गया कि एक प्रेक्षण को $12$ की जगह $10$ पढ़ा गया था। यदि सही प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\mu$ तथा $\sigma^2$ है, तो $15\left(\mu+\mu^2+\sigma^2\right)$ बराबर है ................|

  • [JEE MAIN 2024]

कक्षा $11$ के एक सेक्शन में छात्रों की ऊँचाई तथा भार के लिए निम्नलिखित परिकलन किए गए हैं 

  ऊँचाई भार
माध्य $162.6\,cm$ $52.36\,kg$
प्रसरण $127.69\,c{m^2}$ $23.1361\,k{g^2}$

क्या हम कह सकते हैं कि भारों में ऊँचाई की तुलना में अधिक विचरण है ?

यदि निम्न बारंबारता बंटन :का प्रसरण $50$ है, तो $x$ का मान है |

वर्ग $10-20$ $20-30$ $30-40$
बारंबारता $2$ $x$ $2$

  • [JEE MAIN 2020]