- Home
- Standard 11
- Mathematics
छ: प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $8$ तथा $4$ हैं। यदि प्रत्येक प्रेक्षण को तीन से गुणा कर दिया जाए तो परिणामी प्रेक्षणों का माध्य व मानक विचलन ज्ञात कीजिए।
$12$
$12$
$12$
$12$
Solution
Let the observations be $x_{1}, x_{2}, x_{3}, x _{4}, x_{5} ,$ and $x_{6}$
It is given that mean is $8$ and standard deviation is $4$
Mean, $\bar{x}=\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}}{6}=8$ …….$(1)$
If each observation is multiplied by $3$ and the resulting observations are $y_{i},$ then
$y_{1}=3 x_{1}$ i.e., $x_{1}=\frac{1}{3} y_{1},$ for $i=1$ to $6$
New Mean, $\bar{y}=\frac{y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}}{6}$
$=\frac{3\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)}{6}$
$=3 \times 8$ …….[ Using $(1)$ ]
$=28$
Standard deviation, $\sigma = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^6 {{{\left( {{x_1} – \bar x} \right)}^2}} } $
$\therefore {\left( 4 \right)^2} = \frac{1}{6}\sum\limits_{i = 1}^6 {{{\left( {{x_i} – \bar x} \right)}^2}} $
$\sum\limits_{i = 1}^6 {{{\left( {{x_i} – \bar x} \right)}^2}} = 96$ ……..$(2)$
From $(1)$ and $(2),$ it can be observed that,
$\bar{y}=3 \bar{x}$
$\bar{x}=\frac{1}{3} \bar{y}$
Substituting the values of $x_{1}$ and $\bar{x}$ in $(2),$ we obtain
$\sum\limits_{i = 1}^6 {{{\left( {\frac{1}{3}{y_1} – \frac{1}{3}\bar y} \right)}^2} = 96} $
$ \Rightarrow \sum\limits_{i = 1}^6 {{{\left( {{y_1} – \bar y} \right)}^2} = 864} $
Therefore, variance of new observations $=\left(\frac{1}{6} \times 864\right)=144$
Hence, the standard deviation of new observations is $\sqrt{144}=12$
Similar Questions
निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
${x_i}$ | $92$ | $93$ | $97$ | $98$ | $102$ | $104$ | $109$ |
${f_i}$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |
निम्नलिखित बारंबारता बंटन के लिए माध्य व प्रसरण ज्ञात कीजिए।
वर्ग | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
बारंबारता | $5$ | $8$ | $15$ | $16$ | $6$ |