- Home
- Standard 11
- Mathematics
The mean and variance of $7$ observations are $8$ and $16$ respectively. If one observation $14$ is omitted a and $b$ are respectively mean and variance of remaining $6$ observation, then $a+3 b-5$ is equal to $..........$.
$36$
$35$
$34$
$37$
Solution
$\frac{x_1+x_2+\ldots .+x_7}{7}=8$
$\frac{x_1+x_2+x_3 \ldots .+x_6+14}{7}=8$
$\Rightarrow x_1+x_2+\ldots .+x_6=42$
$\therefore \frac{x_1+x_2 \ldots .+x_6}{6}=\frac{42}{6}=7=a$
$\frac{\sum x_i^2}{7}-8^2=16$
$\Rightarrow x^2=560$
$\Rightarrow x_1^2+x_2^2+\ldots+x_6^2=364$
$b=\frac{x_1^2+x_2^2+\ldots . .+x_6^2}{6}-7^2$
$=\frac{364}{6}-49$
$b=\frac{70}{6}$
$a+3 b-5=7+3 \times \frac{70}{6}-5$
$=37$
Similar Questions
The diameters of circles (in mm) drawn in a design are given below:
Diameters | $33-36$ | $37-40$ | $41-44$ | $45-48$ | $49-52$ |
No. of circles | $15$ | $17$ | $21$ | $22$ | $25$ |
Calculate the standard deviation and mean diameter of the circles.
[ Hint : First make the data continuous by making the classes as $32.5-36.5,36.5-40.5,$ $40.5-44.5,44.5-48.5,48.5-52.5 $ and then proceed.]
If the variance of the frequency distribution is $160$ , then the value of $\mathrm{c} \in \mathrm{N}$ is
$X$ | $c$ | $2c$ | $3c$ | $4c$ | $5c$ | $6c$ |
$f$ | $2$ | $1$ | $1$ | $1$ | $1$ | $1$ |
Find the mean and variance for the following frequency distribution.
Classes | $0-30$ | $30-60$ | $60-90$ | $90-120$ | $120-150$ | $50-180$ | $180-210$ |
$f_i$ | $2$ | $3$ | $5$ | $10$ | $3$ | $5$ | $2$ |